Metal coordination bond and rough interface enhanced triboelectric nanogenerator aiming for multiple complex conditions

IF 16.8 1区 材料科学 Q1 CHEMISTRY, PHYSICAL Nano Energy Pub Date : 2024-12-01 DOI:10.1016/j.nanoen.2024.110532
Zhenyang Li, Chenyu Li, Yue Xiao, Shuzheng Liu, Gang Qin, Jia Yang, Qiang Chen, Aiguo Zhou
{"title":"Metal coordination bond and rough interface enhanced triboelectric nanogenerator aiming for multiple complex conditions","authors":"Zhenyang Li, Chenyu Li, Yue Xiao, Shuzheng Liu, Gang Qin, Jia Yang, Qiang Chen, Aiguo Zhou","doi":"10.1016/j.nanoen.2024.110532","DOIUrl":null,"url":null,"abstract":"Triboelectric nanogenerator (TENG) is widely used in the fields of sustainable green energy harvesting, self-powered motion parameter and tactile sensing, However, it still fails to meet the requirements under various complex conditions, such as low temperatures, self healing after destruction, punching, long-term placement, soaking in acid or alkali solution, scorch, continuous work. Herein, based on metal coordination, Zr<sup>4+</sup> ions are introduced to enhance the first network <em>k</em>-carrageenan (<em>k</em>-CG) for achieving double enhancement in mechanics and electricity of the gel electrode layer, poly (<em>N</em>-hydroxyl acrylamide)/<em>k</em>-CG (PKZ) double network organic conductive gel enhanced by multiple hydrogen bonds and metal coordination bond is designed, and the gel exhibits high tensile strength, high conductivity, fast self-recovery, excellent self-repairing and low-temperature resistance. Based on simple sandpaper templates with different mesh numbers Ecoflex film with rough surfaces is designed for efficient triboelectric contact interface, and TENG with PKZ double network organic conductive gel as electrode layer is constructed, and possesses excellent resistant to multiple complex conditions. With high short-circuit current, open-circuit voltage and output power, the TENG is capable of powering electronic devices, and it can also be sensitive and stable sensing in writing recognition, real-time monitoring of motion parameters involving acceleration, speed and distance. The TENG is stable and reliable for sustainable green energy harvesting, motion parameter and tactile sensing in multiple complex environments. Thus, we provide novel ideas for designing energy harvesting and sensing for future wearable electronics under multiple complex conditions.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"18 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2024.110532","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Triboelectric nanogenerator (TENG) is widely used in the fields of sustainable green energy harvesting, self-powered motion parameter and tactile sensing, However, it still fails to meet the requirements under various complex conditions, such as low temperatures, self healing after destruction, punching, long-term placement, soaking in acid or alkali solution, scorch, continuous work. Herein, based on metal coordination, Zr4+ ions are introduced to enhance the first network k-carrageenan (k-CG) for achieving double enhancement in mechanics and electricity of the gel electrode layer, poly (N-hydroxyl acrylamide)/k-CG (PKZ) double network organic conductive gel enhanced by multiple hydrogen bonds and metal coordination bond is designed, and the gel exhibits high tensile strength, high conductivity, fast self-recovery, excellent self-repairing and low-temperature resistance. Based on simple sandpaper templates with different mesh numbers Ecoflex film with rough surfaces is designed for efficient triboelectric contact interface, and TENG with PKZ double network organic conductive gel as electrode layer is constructed, and possesses excellent resistant to multiple complex conditions. With high short-circuit current, open-circuit voltage and output power, the TENG is capable of powering electronic devices, and it can also be sensitive and stable sensing in writing recognition, real-time monitoring of motion parameters involving acceleration, speed and distance. The TENG is stable and reliable for sustainable green energy harvesting, motion parameter and tactile sensing in multiple complex environments. Thus, we provide novel ideas for designing energy harvesting and sensing for future wearable electronics under multiple complex conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Energy
Nano Energy CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
30.30
自引率
7.40%
发文量
1207
审稿时长
23 days
期刊介绍: Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem. Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.
期刊最新文献
Metal coordination bond and rough interface enhanced triboelectric nanogenerator aiming for multiple complex conditions Mitigating public hygiene anxiety in waste material applications: Development of an antibacterial and high performance triboelectric nanogenerator from recycled PET Fast-charging all-solid-state battery cathodes with long cycle life High-entropy optimizing d-orbital electronic configuration of metal organic framework for high-current-density anion exchange membrane water electrolysis High-Entropy Heterostructures Modulated by Oxyphilic Transition Metals for Efficient Oxygen Evolution Reaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1