Retrieval of refractivity fields from GNSS tropospheric delays: theoretical and data-based evaluation of collocation methods and comparisons with GNSS tomography

IF 3.9 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Journal of Geodesy Pub Date : 2024-11-30 DOI:10.1007/s00190-024-01903-9
Endrit Shehaj, Alain Geiger, Markus Rothacher, Gregor Moeller
{"title":"Retrieval of refractivity fields from GNSS tropospheric delays: theoretical and data-based evaluation of collocation methods and comparisons with GNSS tomography","authors":"Endrit Shehaj, Alain Geiger, Markus Rothacher, Gregor Moeller","doi":"10.1007/s00190-024-01903-9","DOIUrl":null,"url":null,"abstract":"<p>This paper focuses on the retrieval of refractivity fields from GNSS measurements by means of least-squares collocation. Collocation adjustment estimates parameters that relate delays and refractivity without relying on a grid. It contains functional and stochastic models that define the characteristics of the retrieved refractivity fields. This work aims at emphasizing the capabilities and limitations of the collocation method in modeling refractivity and to present it as a valuable alternative to GNSS tomography. Initially, we analyze the stochastic models in collocation and compare the theoretical errors of collocation with those of tomography. We emphasize the low variability of collocation formal variances/covariances compared to tomography and its lower dependence on a-priori fields. Then, based on real and simulated data, we investigate the importance of station resolution and station heights for collocation. Increasing the network resolution, for example, from 10 to 2 km, results in improved a-posteriori statistics, including a 10% reduction in the error statistic for the retrieved refractivity up to 6 km. In addition, using additional stations at higher altitudes has an impact on the retrieved refractivity fields of about 1 ppm in terms of standard deviation up to 6 km, and a bias reduction of more than 3 ppm up to 3 km. Furthermore, we compare refractivity fields retrieved through tomography and collocation, where data of the COSMO weather model are utilized in a closed-loop validation mode to simulate tropospheric delays and validate the retrieved profiles. While tomography estimates are less biased, collocation captures relative changes in refractivity more effectively among the voxels within one height level. Finally, we apply tomography and collocation to test their capabilities to detect an approaching weather front. Both methods can sense the weather front, but their atmospheric structures appear more similar when the GNSS network has a well-distributed height coverage.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"14 1","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geodesy","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1007/s00190-024-01903-9","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper focuses on the retrieval of refractivity fields from GNSS measurements by means of least-squares collocation. Collocation adjustment estimates parameters that relate delays and refractivity without relying on a grid. It contains functional and stochastic models that define the characteristics of the retrieved refractivity fields. This work aims at emphasizing the capabilities and limitations of the collocation method in modeling refractivity and to present it as a valuable alternative to GNSS tomography. Initially, we analyze the stochastic models in collocation and compare the theoretical errors of collocation with those of tomography. We emphasize the low variability of collocation formal variances/covariances compared to tomography and its lower dependence on a-priori fields. Then, based on real and simulated data, we investigate the importance of station resolution and station heights for collocation. Increasing the network resolution, for example, from 10 to 2 km, results in improved a-posteriori statistics, including a 10% reduction in the error statistic for the retrieved refractivity up to 6 km. In addition, using additional stations at higher altitudes has an impact on the retrieved refractivity fields of about 1 ppm in terms of standard deviation up to 6 km, and a bias reduction of more than 3 ppm up to 3 km. Furthermore, we compare refractivity fields retrieved through tomography and collocation, where data of the COSMO weather model are utilized in a closed-loop validation mode to simulate tropospheric delays and validate the retrieved profiles. While tomography estimates are less biased, collocation captures relative changes in refractivity more effectively among the voxels within one height level. Finally, we apply tomography and collocation to test their capabilities to detect an approaching weather front. Both methods can sense the weather front, but their atmospheric structures appear more similar when the GNSS network has a well-distributed height coverage.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从GNSS对流层延迟中检索折射场:基于理论和数据的配置方法评估以及与GNSS层析成像的比较
本文主要研究了利用最小二乘配置方法从GNSS测量数据中检索折射率场。配置调整估计与延迟和折射率有关的参数,而不依赖于网格。它包含函数模型和随机模型,这些模型定义了检索到的折射场的特征。这项工作旨在强调配置方法在折射建模中的能力和局限性,并将其作为GNSS断层扫描的一种有价值的替代方案。首先,我们分析了配置中的随机模型,并比较了配置与层析成像的理论误差。我们强调与断层扫描相比,搭配形式方差/协方差的低可变性及其对先验场的较低依赖性。在此基础上,结合实际数据和模拟数据,探讨了台站分辨率和台站高度对配置的重要性。例如,将网络分辨率从10公里提高到2公里,可以改善后验统计数据,包括将6公里以内的折射率反演误差统计减少10%。此外,在高海拔地区使用额外的观测站对反演的折射率场产生影响,在6公里范围内的标准差约为1 ppm,在3公里范围内的偏差减少超过3 ppm。此外,我们比较了通过层析成像和配置获取的折射率场,其中COSMO天气模型的数据以闭环验证模式用于模拟对流层延迟并验证检索到的剖面。虽然层析估计偏差较小,但搭配更有效地捕获了一个高度水平内体素之间折射率的相对变化。最后,我们应用断层扫描和搭配来测试它们探测接近的天气锋面的能力。两种方法都可以感知天气锋面,但当GNSS网络具有均匀分布的高度覆盖时,它们的大气结构看起来更相似。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Geodesy
Journal of Geodesy 地学-地球化学与地球物理
CiteScore
8.60
自引率
9.10%
发文量
85
审稿时长
9 months
期刊介绍: The Journal of Geodesy is an international journal concerned with the study of scientific problems of geodesy and related interdisciplinary sciences. Peer-reviewed papers are published on theoretical or modeling studies, and on results of experiments and interpretations. Besides original research papers, the journal includes commissioned review papers on topical subjects and special issues arising from chosen scientific symposia or workshops. The journal covers the whole range of geodetic science and reports on theoretical and applied studies in research areas such as: -Positioning -Reference frame -Geodetic networks -Modeling and quality control -Space geodesy -Remote sensing -Gravity fields -Geodynamics
期刊最新文献
IAG newsletter Effect of the Earth’s triaxiality on the tide-generating potential A machine learning-based partial ambiguity resolution method for precise positioning in challenging environments On the feasibility of retrieving the temporal gravity field via improved optical clocks From one-dimensional to three-dimensional: effect of lateral inhomogeneity on tidal gravity and its implications for lithospheric strength
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1