Suppressing Atmospheric Degradation of Sulfide-Based Solid Electrolytes via Ultrathin Metal Oxide Layers

IF 9.6 1区 化学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY ACS Materials Letters Pub Date : 2024-11-12 DOI:10.1021/acsmaterialslett.4c0192310.1021/acsmaterialslett.4c01923
Taewoo Kim, Zachary D. Hood, Aditya Sundar, Anil U. Mane, Francisco Lagunas, Khagesh Kumar, Neelam Sunariwal, Jordi Cabana, Sanja Tepavcevic, Jeffrey W. Elam, Peter Zapol and Justin G. Connell*, 
{"title":"Suppressing Atmospheric Degradation of Sulfide-Based Solid Electrolytes via Ultrathin Metal Oxide Layers","authors":"Taewoo Kim,&nbsp;Zachary D. Hood,&nbsp;Aditya Sundar,&nbsp;Anil U. Mane,&nbsp;Francisco Lagunas,&nbsp;Khagesh Kumar,&nbsp;Neelam Sunariwal,&nbsp;Jordi Cabana,&nbsp;Sanja Tepavcevic,&nbsp;Jeffrey W. Elam,&nbsp;Peter Zapol and Justin G. Connell*,&nbsp;","doi":"10.1021/acsmaterialslett.4c0192310.1021/acsmaterialslett.4c01923","DOIUrl":null,"url":null,"abstract":"<p >Sulfide-based solid-state electrolytes (SSEs) are promising materials with superior Li-ion conductivity; however, their poor atmospheric stability limits commercial manufacturing at scale. Here, we investigate the impact of ultrathin metal oxide layers deposited via atomic layer deposition (ALD) on the stability of Li<sub>6</sub>PS<sub>5</sub>Cl (LPSCl). Al<sub>2</sub>O<sub>3</sub> layers grown directly on LPSCl particles significantly stabilize the surface chemistry and Li-ion transport properties relative to uncoated material upon exposure to both an ambient atmosphere (22% relative humidity, RH) and humidified O<sub>2</sub> (100% RH). Detailed investigations indicate that coatings impede the surface and bulk degradation kinetics of exposed materials, even for coatings as thin as ∼1 Å. This suggests that stabilization is due to more than just a physical barrier. Shifts in valence band edge positions of coated LPSCl indicate that ALD coatings alter the surface electronic structure and resulting oxidation tendency of underlying LPSCl, suggesting new avenues to improving the environmental stability of sulfide SSEs.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 12","pages":"5409–5417 5409–5417"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01923","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Sulfide-based solid-state electrolytes (SSEs) are promising materials with superior Li-ion conductivity; however, their poor atmospheric stability limits commercial manufacturing at scale. Here, we investigate the impact of ultrathin metal oxide layers deposited via atomic layer deposition (ALD) on the stability of Li6PS5Cl (LPSCl). Al2O3 layers grown directly on LPSCl particles significantly stabilize the surface chemistry and Li-ion transport properties relative to uncoated material upon exposure to both an ambient atmosphere (22% relative humidity, RH) and humidified O2 (100% RH). Detailed investigations indicate that coatings impede the surface and bulk degradation kinetics of exposed materials, even for coatings as thin as ∼1 Å. This suggests that stabilization is due to more than just a physical barrier. Shifts in valence band edge positions of coated LPSCl indicate that ALD coatings alter the surface electronic structure and resulting oxidation tendency of underlying LPSCl, suggesting new avenues to improving the environmental stability of sulfide SSEs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用超薄金属氧化物层抑制硫化物基固体电解质的大气降解
硫化物基固态电解质具有优异的锂离子导电性,是一种很有前途的材料;然而,它们的大气稳定性差限制了大规模的商业制造。在这里,我们研究了通过原子层沉积(ALD)沉积超薄金属氧化物层对Li6PS5Cl (LPSCl)稳定性的影响。在LPSCl颗粒上直接生长的Al2O3层在暴露于环境大气(22%相对湿度,RH)和加湿O2 (100% RH)时,相对于未涂覆的材料,显著稳定了表面化学和锂离子传输性能。详细的研究表明,涂层阻碍了暴露材料的表面和整体降解动力学,即使是薄至~ 1 Å的涂层。这表明,稳定不仅仅是由于物理障碍。包覆的LPSCl价带边缘位置的变化表明ALD涂层改变了LPSCl的表面电子结构,从而改变了底层LPSCl的氧化倾向,这为提高硫化sse的环境稳定性提供了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Materials Letters
ACS Materials Letters MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
14.60
自引率
3.50%
发文量
261
期刊介绍: ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.
期刊最新文献
Stepwise Structural Relaxation in Battery Active Materials. Probing the Design Rules for Optimizing Electron Spin Relaxation in Densely Packed Triplet Media for Quantum Applications. 3D-Printable Elastomers for Real-Time Autonomous Self-Healing in Soft Devices. Issue Editorial Masthead Issue Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1