Gabriele Lingua, Vladislav Y. Shevtsov, Petr S. Vlasov, Laura Puchot, Claudio Gerbaldi* and Alexander S. Shaplov*,
{"title":"A New (Trifluoromethane)Sulfonylimide Single-Ion Conductor with PEG Spacer for All-Solid-State Lithium-Based Batteries","authors":"Gabriele Lingua, Vladislav Y. Shevtsov, Petr S. Vlasov, Laura Puchot, Claudio Gerbaldi* and Alexander S. Shaplov*, ","doi":"10.1021/acsmaterialslett.4c0164710.1021/acsmaterialslett.4c01647","DOIUrl":null,"url":null,"abstract":"<p >The choice of ionic-liquid-like monomers (ILM) for single-ion conducting polyelectrolytes (SICPs) is crucial for the performance of all-solid-state lithium batteries. In the current study, we propose a novel approach for development of SICPs via design and synthesis of a new ILM with long poly(ethylene oxide) spacer between methacrylic group and (trifluoromethane)sulfonylimide anion. Its homopolymer shows an ionic conductivity that is ∼5 orders of magnitude higher (9.2 × 10<sup>–8</sup> S cm<sup>–1</sup> at 25 °C), in comparison with previously reported analogues, while the conductivity of its random copolymer with poly(ethylene glycol)methyl ethermethacrylate reaches the levels of 10<sup>–6</sup> and 10<sup>–5</sup> S cm<sup>–1</sup> at 25 and 70 °C, respectively. The copolymer provides excellent thermal (<i>T</i><sub>onset</sub> ≈ 200 °C) and electrochemical (4.5 V vs Li<sup>+</sup>/Li) stabilities, good compatibility with Li metal, and effective suppression of dendrite growth. Li/SICP/LiFePO<sub>4</sub> cells are capable of reversibly operating at different <i>C</i> rates, demonstrating excellent Coulombic efficiency and retaining specific capacity upon prolonged charge/discharge cycling at a relatively high current rate (<i>C</i>/5) at 70 °C.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 12","pages":"5429–5437 5429–5437"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/acsmaterialslett.4c01647","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01647","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The choice of ionic-liquid-like monomers (ILM) for single-ion conducting polyelectrolytes (SICPs) is crucial for the performance of all-solid-state lithium batteries. In the current study, we propose a novel approach for development of SICPs via design and synthesis of a new ILM with long poly(ethylene oxide) spacer between methacrylic group and (trifluoromethane)sulfonylimide anion. Its homopolymer shows an ionic conductivity that is ∼5 orders of magnitude higher (9.2 × 10–8 S cm–1 at 25 °C), in comparison with previously reported analogues, while the conductivity of its random copolymer with poly(ethylene glycol)methyl ethermethacrylate reaches the levels of 10–6 and 10–5 S cm–1 at 25 and 70 °C, respectively. The copolymer provides excellent thermal (Tonset ≈ 200 °C) and electrochemical (4.5 V vs Li+/Li) stabilities, good compatibility with Li metal, and effective suppression of dendrite growth. Li/SICP/LiFePO4 cells are capable of reversibly operating at different C rates, demonstrating excellent Coulombic efficiency and retaining specific capacity upon prolonged charge/discharge cycling at a relatively high current rate (C/5) at 70 °C.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.