Junchao Luo, Wei Hu, Xiang Gao, Jinyu Bai, Lei Sheng, Huilin Yang, Xiao-zhong Zhou* and Qin Shi*,
{"title":"Macrophage Polarization-Based Biomaterials for Repairing Spinal Cord Injury","authors":"Junchao Luo, Wei Hu, Xiang Gao, Jinyu Bai, Lei Sheng, Huilin Yang, Xiao-zhong Zhou* and Qin Shi*, ","doi":"10.1021/acsmaterialslett.4c0170110.1021/acsmaterialslett.4c01701","DOIUrl":null,"url":null,"abstract":"<p >Spinal cord injury (SCI) remains a serious problem, owing to its severe consequences and therapeutic limitations. It leads to irreversible impairment of both motor and sensory functions, posing a challenge to recovery and imposing an immense socioeconomic burden on patients. Existing treatment strategies for SCI primarily focus on secondary injury, particularly the modulation of the immune microenvironment after SCI. Infiltrating macrophages play a crucial role in regulating inflammation around the injury site. Macrophages alter their functional phenotypes in response to various stimuli. Classically activated macrophages (M1) exacerbate SCI owing to their pro-inflammatory function, whereas alternatively activated macrophages (M2) inhibit the inflammatory response. Therefore, regulating macrophage polarization represents a promising therapeutic strategy for SCI. Several biomaterial-based strategies for repairing SCI have been developed and are constantly being updated with technological advancements owing to their ability to alleviate neuroinflammation and promote neuroregeneration. In this Review, we focus on the role of macrophages in SCI and discuss the recent research progress of biomaterials targeting macrophage-mediated inflammation for repair and regeneration following SCI. Altogether, this Review provides novel insights into the treatment of SCI.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 12","pages":"5438–5453 5438–5453"},"PeriodicalIF":9.6000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01701","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal cord injury (SCI) remains a serious problem, owing to its severe consequences and therapeutic limitations. It leads to irreversible impairment of both motor and sensory functions, posing a challenge to recovery and imposing an immense socioeconomic burden on patients. Existing treatment strategies for SCI primarily focus on secondary injury, particularly the modulation of the immune microenvironment after SCI. Infiltrating macrophages play a crucial role in regulating inflammation around the injury site. Macrophages alter their functional phenotypes in response to various stimuli. Classically activated macrophages (M1) exacerbate SCI owing to their pro-inflammatory function, whereas alternatively activated macrophages (M2) inhibit the inflammatory response. Therefore, regulating macrophage polarization represents a promising therapeutic strategy for SCI. Several biomaterial-based strategies for repairing SCI have been developed and are constantly being updated with technological advancements owing to their ability to alleviate neuroinflammation and promote neuroregeneration. In this Review, we focus on the role of macrophages in SCI and discuss the recent research progress of biomaterials targeting macrophage-mediated inflammation for repair and regeneration following SCI. Altogether, this Review provides novel insights into the treatment of SCI.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.