Pei Wang, Qiqiong Ren, Nan Zhang, Guojun Zhou*, Shi-Li Li and Xian-Ming Zhang*,
{"title":"Supramolecular Strategy for Constructing Mixed Coordination Units toward Ultra-Stable White-Light Emission in Zero-Dimensional Hybrid Indium Chloride","authors":"Pei Wang, Qiqiong Ren, Nan Zhang, Guojun Zhou*, Shi-Li Li and Xian-Ming Zhang*, ","doi":"10.1021/acsmaterialslett.4c0174410.1021/acsmaterialslett.4c01744","DOIUrl":null,"url":null,"abstract":"<p >Intensive research into single-component white-light-emitting materials is extremely valuable for innovating next-generation solid-state lighting technology. Herein, we innovatively propose a crown ether-assisted supramolecular self-assembly strategy that is supported by the construction of mixed coordination units in low-dimensional hybrid metal halides (LHMHs). The resultant [(C<sub>10</sub>H<sub>20</sub>O<sub>5</sub>)InCl<sub>2</sub>]InCl<sub>4</sub> is an extremely rare class of zero-dimensional (0D) indium-based chloride that is featured by the structurally deformable mixed coordination units of 7-coordinated [InCl<sub>2</sub>O<sub>5</sub>] (<b>In-1</b>) and 4-coordinated [InCl<sub>4</sub>] (<b>In-2</b>). Excitingly, it exhibits a high-quality white-light emission with a full width at half-maximum (fwhm) of 211 nm and a photoluminescence quantum yield (PLQY) of 33.6%, which is attributed to the unprecedented intrinsic dual self-trapped excitons (STEs) under electron–phonon coupling. The electron-transition mechanism is elucidated according to temperature-dependent PL spectra and theoretical calculations. Beyond that, the indium-based white-light emitter possesses superb water stability because of the hydrophobicity of 15-crown-5, which is unachievable for almost all LHMHs. This work sheds light on an executable self-assembly strategy for building mixed coordination units and extends to the design of single-component white-light-emitting materials.</p>","PeriodicalId":19,"journal":{"name":"ACS Materials Letters","volume":"6 12","pages":"5242–5247 5242–5247"},"PeriodicalIF":9.6000,"publicationDate":"2024-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Materials Letters","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsmaterialslett.4c01744","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Intensive research into single-component white-light-emitting materials is extremely valuable for innovating next-generation solid-state lighting technology. Herein, we innovatively propose a crown ether-assisted supramolecular self-assembly strategy that is supported by the construction of mixed coordination units in low-dimensional hybrid metal halides (LHMHs). The resultant [(C10H20O5)InCl2]InCl4 is an extremely rare class of zero-dimensional (0D) indium-based chloride that is featured by the structurally deformable mixed coordination units of 7-coordinated [InCl2O5] (In-1) and 4-coordinated [InCl4] (In-2). Excitingly, it exhibits a high-quality white-light emission with a full width at half-maximum (fwhm) of 211 nm and a photoluminescence quantum yield (PLQY) of 33.6%, which is attributed to the unprecedented intrinsic dual self-trapped excitons (STEs) under electron–phonon coupling. The electron-transition mechanism is elucidated according to temperature-dependent PL spectra and theoretical calculations. Beyond that, the indium-based white-light emitter possesses superb water stability because of the hydrophobicity of 15-crown-5, which is unachievable for almost all LHMHs. This work sheds light on an executable self-assembly strategy for building mixed coordination units and extends to the design of single-component white-light-emitting materials.
期刊介绍:
ACS Materials Letters is a journal that publishes high-quality and urgent papers at the forefront of fundamental and applied research in the field of materials science. It aims to bridge the gap between materials and other disciplines such as chemistry, engineering, and biology. The journal encourages multidisciplinary and innovative research that addresses global challenges. Papers submitted to ACS Materials Letters should clearly demonstrate the need for rapid disclosure of key results. The journal is interested in various areas including the design, synthesis, characterization, and evaluation of emerging materials, understanding the relationships between structure, property, and performance, as well as developing materials for applications in energy, environment, biomedical, electronics, and catalysis. The journal has a 2-year impact factor of 11.4 and is dedicated to publishing transformative materials research with fast processing times. The editors and staff of ACS Materials Letters actively participate in major scientific conferences and engage closely with readers and authors. The journal also maintains an active presence on social media to provide authors with greater visibility.