Hairy vetch influence on nitrous oxide and nitrate leaching losses during corn growing seasons in reduced and no-till systems

IF 5.6 1区 农林科学 Q1 SOIL SCIENCE Geoderma Pub Date : 2024-11-29 DOI:10.1016/j.geoderma.2024.117121
Ashani Thilakarathne , Madhabi Tiwari , Oladapo Adeyemi , Amanda Weidhuner , Pawan Kumar , Gurbir Singh , Jon Schoonover , Karl Williard , Karla Gage , Amir Sadeghpour
{"title":"Hairy vetch influence on nitrous oxide and nitrate leaching losses during corn growing seasons in reduced and no-till systems","authors":"Ashani Thilakarathne ,&nbsp;Madhabi Tiwari ,&nbsp;Oladapo Adeyemi ,&nbsp;Amanda Weidhuner ,&nbsp;Pawan Kumar ,&nbsp;Gurbir Singh ,&nbsp;Jon Schoonover ,&nbsp;Karl Williard ,&nbsp;Karla Gage ,&nbsp;Amir Sadeghpour","doi":"10.1016/j.geoderma.2024.117121","DOIUrl":null,"url":null,"abstract":"<div><div>Shifting from reduced tillage (RT) to no-till (NT) often reduces phosphorus (P) runoff by minimizing soil erosion. However, it might increase nitrous oxide (N<sub>2</sub>O) emissions or nitrate-N (NO<sub>3</sub>-N) leaching. Including a legume cover crop such as hairy vetch (<em>Vicia villosa</em> L.) before corn (<em>Zea mays</em> L.) is a common practice among growers in the Midwest USA. However, the effects of hairy vetch following soybean (<em>Glycine</em> max L.) harvest on NO<sub>3</sub>-N leaching and N<sub>2</sub>O emissions during the following corn season in soil with clay and fragipans are less assessed. This study evaluated the influence of cover crop (hairy vetch vs. no-CC control) and tillage systems (NT vs. RT) when 179 kg ha<sup>−1</sup> nitrogen (N) was applied at planting on (i) corn yield, N uptake, removal, and balance; (ii) N<sub>2</sub>O emissions and NO<sub>3</sub>-N leaching; (iii) yield-scaled N<sub>2</sub>O emissions and NO<sub>3</sub>-N leaching during two corn growing seasons. We also evaluated factors influencing N<sub>2</sub>O emissions and NO<sub>3</sub>-N leaching via principal component analysis. Corn grain yield was higher in RT (8.4 Mg ha<sup>−1</sup>) than NT (6.2 Mg ha<sup>−1</sup>), reflecting<!--> <!-->more available N in the soil in RT than NT, possibly due to the favorable aeration and increased soil temperature in deeper soil layers resulting from tillage. Hairy vetch increased corn grain yield and soil N. However, it led to higher losses of both N<sub>2</sub>O-N and NO<sub>3</sub>-N, indicating that increased corn grain yield, due to the hairy vetch’s N contribution, also resulted in higher N losses. Yield-scaled N<sub>2</sub>O-N emissions in NT-2019 (3696.4 g N<sub>2</sub>O-N Mg<sup>−1</sup>) were twofold higher than RT-2019 (1872.7 g N<sub>2</sub>O-N Mg<sup>−1</sup>) and almost fourfold higher than NT-2021 and RT-2021 indicating in a wet year like 2019, yield-scaled N<sub>2</sub>O-N emissions were higher in NT than RT. Principal component analysis indicated that NO<sub>3</sub>-N leaching was most correlated with soil N availability and corn grain yield (both positive correlations). In contrast, due to the continued presence of soil N, soil N<sub>2</sub>O-N fluxes were more driven by soil volumetric water content (VWC) with a positive correlation. We conclude that in soils with claypan and fragipans in humid climates, NT is not an effective strategy to decrease N<sub>2</sub>O-N fluxes. Hairy vetch benefits corn grain yield and supplements N but increases N loss through NO<sub>3</sub>-N leaching and N<sub>2</sub>O-N emissions.</div></div>","PeriodicalId":12511,"journal":{"name":"Geoderma","volume":"453 ","pages":"Article 117121"},"PeriodicalIF":5.6000,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoderma","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016706124003501","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Shifting from reduced tillage (RT) to no-till (NT) often reduces phosphorus (P) runoff by minimizing soil erosion. However, it might increase nitrous oxide (N2O) emissions or nitrate-N (NO3-N) leaching. Including a legume cover crop such as hairy vetch (Vicia villosa L.) before corn (Zea mays L.) is a common practice among growers in the Midwest USA. However, the effects of hairy vetch following soybean (Glycine max L.) harvest on NO3-N leaching and N2O emissions during the following corn season in soil with clay and fragipans are less assessed. This study evaluated the influence of cover crop (hairy vetch vs. no-CC control) and tillage systems (NT vs. RT) when 179 kg ha−1 nitrogen (N) was applied at planting on (i) corn yield, N uptake, removal, and balance; (ii) N2O emissions and NO3-N leaching; (iii) yield-scaled N2O emissions and NO3-N leaching during two corn growing seasons. We also evaluated factors influencing N2O emissions and NO3-N leaching via principal component analysis. Corn grain yield was higher in RT (8.4 Mg ha−1) than NT (6.2 Mg ha−1), reflecting more available N in the soil in RT than NT, possibly due to the favorable aeration and increased soil temperature in deeper soil layers resulting from tillage. Hairy vetch increased corn grain yield and soil N. However, it led to higher losses of both N2O-N and NO3-N, indicating that increased corn grain yield, due to the hairy vetch’s N contribution, also resulted in higher N losses. Yield-scaled N2O-N emissions in NT-2019 (3696.4 g N2O-N Mg−1) were twofold higher than RT-2019 (1872.7 g N2O-N Mg−1) and almost fourfold higher than NT-2021 and RT-2021 indicating in a wet year like 2019, yield-scaled N2O-N emissions were higher in NT than RT. Principal component analysis indicated that NO3-N leaching was most correlated with soil N availability and corn grain yield (both positive correlations). In contrast, due to the continued presence of soil N, soil N2O-N fluxes were more driven by soil volumetric water content (VWC) with a positive correlation. We conclude that in soils with claypan and fragipans in humid climates, NT is not an effective strategy to decrease N2O-N fluxes. Hairy vetch benefits corn grain yield and supplements N but increases N loss through NO3-N leaching and N2O-N emissions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geoderma
Geoderma 农林科学-土壤科学
CiteScore
11.80
自引率
6.60%
发文量
597
审稿时长
58 days
期刊介绍: Geoderma - the global journal of soil science - welcomes authors, readers and soil research from all parts of the world, encourages worldwide soil studies, and embraces all aspects of soil science and its associated pedagogy. The journal particularly welcomes interdisciplinary work focusing on dynamic soil processes and functions across space and time.
期刊最新文献
Effects of exopolysaccharides from Rhizobium tropici on transformation and aggregate sizes of iron oxides Hairy vetch influence on nitrous oxide and nitrate leaching losses during corn growing seasons in reduced and no-till systems Effects of different tillage methods on soil properties and maize seedling growth in alternating wide and narrow rows rotation mode in the Songliao Plain of China High resolution soil moisture mapping in 3D space and time using machine learning and depth functions A European soil organic carbon monitoring system leveraging Sentinel 2 imagery and the LUCAS soil data base
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1