{"title":"Green synthesis of graphene oxide from invasive plant species (Nymphaeaceae) for enhancing cement paste microstructure and compressive strength","authors":"Gowhar Afzal, Tanveer Rasool","doi":"10.1016/j.biteb.2024.102005","DOIUrl":null,"url":null,"abstract":"<div><div>The proliferation of invasive species, particularly water lilies (<em>Nymphaeaceae</em>), in aquatic ecosystems, such as Dal Lake in Srinagar, J&K, India, has led to significant challenges for aquatic life. This research addresses this issue by harnessing the invasive water lily as a resource for an environmentally conscious approach to produce graphene oxide (GO) through thermal pyrolysis. The synthesized GO was incorporated into cement paste (CP) (ranging from 0 to 0.09 wt%) to explore its impact on workability, mechanical properties, and microstructure. Increasing GO concentrations led to decreased workability. However, GO positively influenced compressive strength, with optimal enhancements observed at 0.06 %, a maximum enhancement in compressive strength of 53.7 % and 35.4 % at 7 and 28 days when compared to the control CP. Microstructure analysis through FE-SEM revealed improved cement hydration, pore filling, and densified microstructure, supported by XRD and FT-IR findings. Specifically, GO at 0.06 % concentration showed notable improvements, indicating its crucial role in enhancing mechanical properties.</div></div>","PeriodicalId":8947,"journal":{"name":"Bioresource Technology Reports","volume":"28 ","pages":"Article 102005"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioresource Technology Reports","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2589014X24002469","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0
Abstract
The proliferation of invasive species, particularly water lilies (Nymphaeaceae), in aquatic ecosystems, such as Dal Lake in Srinagar, J&K, India, has led to significant challenges for aquatic life. This research addresses this issue by harnessing the invasive water lily as a resource for an environmentally conscious approach to produce graphene oxide (GO) through thermal pyrolysis. The synthesized GO was incorporated into cement paste (CP) (ranging from 0 to 0.09 wt%) to explore its impact on workability, mechanical properties, and microstructure. Increasing GO concentrations led to decreased workability. However, GO positively influenced compressive strength, with optimal enhancements observed at 0.06 %, a maximum enhancement in compressive strength of 53.7 % and 35.4 % at 7 and 28 days when compared to the control CP. Microstructure analysis through FE-SEM revealed improved cement hydration, pore filling, and densified microstructure, supported by XRD and FT-IR findings. Specifically, GO at 0.06 % concentration showed notable improvements, indicating its crucial role in enhancing mechanical properties.