Chuan Wang , Wei Wei , Laijun Chen , Yuan Gong , Shengwei Mei
{"title":"An hourly-resolution capacity sharing market for generation-side clustered renewable-storage plants","authors":"Chuan Wang , Wei Wei , Laijun Chen , Yuan Gong , Shengwei Mei","doi":"10.1016/j.apenergy.2024.124964","DOIUrl":null,"url":null,"abstract":"<div><div>With the increasing penetration of renewable energy on the generation side, their volatility greatly challenges power balancing in the power grids. Deploying energy storage in wind farms, solar stations, and collection stations allow renewable plants to sell energy guided by the electricity price signal and increase their market revenues. This paper considers a representative scenario on the generation side. Wind farms and solar stations managed by different entities sell energy to a market through a collection station, aiming to maximize individual profits. Each renewable plant is equipped with a local battery in order to store energy and wait for a higher price. They can also rent some capacity from a shared energy storage unit at the collection station for better profitability. This paper designs a day-ahead hourly-resolution capacity rental market for the shared energy storage in the collection station and proposes an online operation policy for individual renewable plants. In the day-ahead market, renewable plants bid their needs of storage capacity in each time period based on the rental price and a batch of renewable power scenarios in the next day, and then the market is cleared at the Stackelberg equilibrium where the shared storage acts as the leader. Given the capacity obtained from the day-ahead market, each renewable plant obtains reference storage level trajectories in the pre-specified scenarios as experiences. In the real-time stage, the dispatch of local and shared storage units is determined from the conditional expectation of experiences, where the conditional distribution is generated by kernel regression using dynamic time warping as the distance measure. This proposed method does not rely on renewable power forecasts and is easy to implement. Numerical results validate the economy of the proposed method. Compared to the autarky mode, the profit of a renewable plant is increased by 40.6% on average. Compared to the ideal optimum, the optimality gap of the proposed method is 1.4% on average.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 124964"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030626192402347X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
With the increasing penetration of renewable energy on the generation side, their volatility greatly challenges power balancing in the power grids. Deploying energy storage in wind farms, solar stations, and collection stations allow renewable plants to sell energy guided by the electricity price signal and increase their market revenues. This paper considers a representative scenario on the generation side. Wind farms and solar stations managed by different entities sell energy to a market through a collection station, aiming to maximize individual profits. Each renewable plant is equipped with a local battery in order to store energy and wait for a higher price. They can also rent some capacity from a shared energy storage unit at the collection station for better profitability. This paper designs a day-ahead hourly-resolution capacity rental market for the shared energy storage in the collection station and proposes an online operation policy for individual renewable plants. In the day-ahead market, renewable plants bid their needs of storage capacity in each time period based on the rental price and a batch of renewable power scenarios in the next day, and then the market is cleared at the Stackelberg equilibrium where the shared storage acts as the leader. Given the capacity obtained from the day-ahead market, each renewable plant obtains reference storage level trajectories in the pre-specified scenarios as experiences. In the real-time stage, the dispatch of local and shared storage units is determined from the conditional expectation of experiences, where the conditional distribution is generated by kernel regression using dynamic time warping as the distance measure. This proposed method does not rely on renewable power forecasts and is easy to implement. Numerical results validate the economy of the proposed method. Compared to the autarky mode, the profit of a renewable plant is increased by 40.6% on average. Compared to the ideal optimum, the optimality gap of the proposed method is 1.4% on average.
期刊介绍:
Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.