Multi-scale spatio-temporal transformer: A novel model reduction approach for day-ahead security-constrained unit commitment

IF 10.1 1区 工程技术 Q1 ENERGY & FUELS Applied Energy Pub Date : 2024-11-30 DOI:10.1016/j.apenergy.2024.124963
Mao Liu , Xiangyu Kong , Kaizhi Xiong , Jimin Wang , Qingxiang Lin
{"title":"Multi-scale spatio-temporal transformer: A novel model reduction approach for day-ahead security-constrained unit commitment","authors":"Mao Liu ,&nbsp;Xiangyu Kong ,&nbsp;Kaizhi Xiong ,&nbsp;Jimin Wang ,&nbsp;Qingxiang Lin","doi":"10.1016/j.apenergy.2024.124963","DOIUrl":null,"url":null,"abstract":"<div><div>Security-constrained unit commitment (SCUC) in large-scale power systems faces significant computational challenges, particularly with increasing renewable energy integration. This paper introduces a multi-scale spatio-temporal transformer (MSTT) model for efficient SCUC problem reduction through three key innovations: a multi-scale ST attention mechanism integrating both hierarchical temporal attention and electrical distance-based spatial attention to capture complex system dependencies, a physics-informed position encoding method incorporating power system domain knowledge including electrical distance, power flow sensitivity, and generator stability characteristics, and an adaptive reduction strategy with dynamic threshold adjustment mechanism that automatically balances computational efficiency and solution reliability based on system states and prediction confidence. Experimental results on IEEE test systems demonstrate that the MSTT model achieves up to 69.5 % computational time reduction while maintaining solution optimality (base-normalized cost (BNC) ≤ 0.05 %), significantly outperforming existing approaches.</div></div>","PeriodicalId":246,"journal":{"name":"Applied Energy","volume":"380 ","pages":"Article 124963"},"PeriodicalIF":10.1000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306261924023468","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Security-constrained unit commitment (SCUC) in large-scale power systems faces significant computational challenges, particularly with increasing renewable energy integration. This paper introduces a multi-scale spatio-temporal transformer (MSTT) model for efficient SCUC problem reduction through three key innovations: a multi-scale ST attention mechanism integrating both hierarchical temporal attention and electrical distance-based spatial attention to capture complex system dependencies, a physics-informed position encoding method incorporating power system domain knowledge including electrical distance, power flow sensitivity, and generator stability characteristics, and an adaptive reduction strategy with dynamic threshold adjustment mechanism that automatically balances computational efficiency and solution reliability based on system states and prediction confidence. Experimental results on IEEE test systems demonstrate that the MSTT model achieves up to 69.5 % computational time reduction while maintaining solution optimality (base-normalized cost (BNC) ≤ 0.05 %), significantly outperforming existing approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多尺度时空转换器:日前安全约束单元承诺的新模型约简方法
大型电力系统中的安全约束单元承诺(SCUC)面临着重大的计算挑战,特别是随着可再生能源整合的增加。本文介绍了一种多尺度时空变压器(MSTT)模型,该模型通过三个关键创新来有效地减少scc问题:一种多尺度ST注意机制,集成了分层时间注意和基于电距离的空间注意,以捕捉复杂的系统依赖性;一种基于物理的位置编码方法,结合了电力系统领域知识,包括电距离、潮流灵敏度和发电机稳定性特征;基于动态阈值调整机制的自适应约简策略,根据系统状态和预测置信度自动平衡计算效率和解的可靠性。在IEEE测试系统上的实验结果表明,MSTT模型在保持解的最优性(基本归一化成本(BNC)≤0.05%)的情况下,计算时间减少了69.5%,显著优于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Energy
Applied Energy 工程技术-工程:化工
CiteScore
21.20
自引率
10.70%
发文量
1830
审稿时长
41 days
期刊介绍: Applied Energy serves as a platform for sharing innovations, research, development, and demonstrations in energy conversion, conservation, and sustainable energy systems. The journal covers topics such as optimal energy resource use, environmental pollutant mitigation, and energy process analysis. It welcomes original papers, review articles, technical notes, and letters to the editor. Authors are encouraged to submit manuscripts that bridge the gap between research, development, and implementation. The journal addresses a wide spectrum of topics, including fossil and renewable energy technologies, energy economics, and environmental impacts. Applied Energy also explores modeling and forecasting, conservation strategies, and the social and economic implications of energy policies, including climate change mitigation. It is complemented by the open-access journal Advances in Applied Energy.
期刊最新文献
Gearbox pump failure prognostics in offshore wind turbine by an integrated data-driven model Capacity fade-aware parameter identification of zero-dimensional model for vanadium redox flow batteries Can government green discourse-behavior congruence mitigate carbon emissions? A polynomial regression with response surface analysis Passive thermal management of CO2 Methanation using phase change material with high thermal conductivity Energy systems integration and sector coupling in future ports: A qualitative study of Norwegian ports
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1