Trace element uptake by macroalgae: Organic colloids as a source of metals, including Fe and rare earth elements

IF 8.1 2区 环境科学与生态学 Q1 ENVIRONMENTAL SCIENCES Chemosphere Pub Date : 2024-12-01 DOI:10.1016/j.chemosphere.2024.143849
Jean-Alix Barrat , Thierry Heulin , Germain Bayon , Matthieu Waeles , Laurent Chauvaud , Marie-Laure Rouget
{"title":"Trace element uptake by macroalgae: Organic colloids as a source of metals, including Fe and rare earth elements","authors":"Jean-Alix Barrat ,&nbsp;Thierry Heulin ,&nbsp;Germain Bayon ,&nbsp;Matthieu Waeles ,&nbsp;Laurent Chauvaud ,&nbsp;Marie-Laure Rouget","doi":"10.1016/j.chemosphere.2024.143849","DOIUrl":null,"url":null,"abstract":"<div><div>We determined the concentrations of trace elements including Fe, Al, rare earth elements and Y (REY), in <em>Ascophyllum nodosum</em>, one of the most abundant brown macroalgae in the North Atlantic. Samples were collected in the Bay of Brest (Brittany, France) and in the estuary of its main contributing river. The Y/Ho, Al/Ga, and Zr/Hf ratios display values distinctive from seawater, but similar to the continental crust; an observation which we show cannot be explained by the incorporation of terrigenous particles, nor inorganic colloids. On the other hand, REY, Ga, Al, as well as other trace elements such as Th, Sc, Pb and Cr, correlate strongly with Fe abundances. Since all these elements are chiefly carried by organic colloids, we propose that colloidal uptake onto the surface of the algae controls the bioaccumulation of these metals. Their assimilation or internalization by algae requires biological pathways yet to be determined. This process is vital for these organisms, as organic colloids appear to be their main source of Fe, an essential nutrient. However, it also allows the accumulation of some potentially toxic metals in algae (e.g., Pb), with implications on the overall health of coastal ecosystems.</div></div>","PeriodicalId":276,"journal":{"name":"Chemosphere","volume":"369 ","pages":"Article 143849"},"PeriodicalIF":8.1000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosphere","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045653524027516","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We determined the concentrations of trace elements including Fe, Al, rare earth elements and Y (REY), in Ascophyllum nodosum, one of the most abundant brown macroalgae in the North Atlantic. Samples were collected in the Bay of Brest (Brittany, France) and in the estuary of its main contributing river. The Y/Ho, Al/Ga, and Zr/Hf ratios display values distinctive from seawater, but similar to the continental crust; an observation which we show cannot be explained by the incorporation of terrigenous particles, nor inorganic colloids. On the other hand, REY, Ga, Al, as well as other trace elements such as Th, Sc, Pb and Cr, correlate strongly with Fe abundances. Since all these elements are chiefly carried by organic colloids, we propose that colloidal uptake onto the surface of the algae controls the bioaccumulation of these metals. Their assimilation or internalization by algae requires biological pathways yet to be determined. This process is vital for these organisms, as organic colloids appear to be their main source of Fe, an essential nutrient. However, it also allows the accumulation of some potentially toxic metals in algae (e.g., Pb), with implications on the overall health of coastal ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大型藻类对微量元素的吸收:作为金属来源的有机胶体,包括铁和稀土元素
本文测定了北大西洋最丰富的褐藻之一——葡萄藻(Ascophyllum nodosum)中微量元素Fe、Al、稀土元素和Y (REY)的含量。样本采集于布列塔尼的布列斯特湾及其主要河流的入海口。Y/Ho、Al/Ga和Zr/Hf比值与海水值不同,与大陆地壳值相近;我们所观察到的现象不能用陆源粒子或无机胶体的结合来解释。另一方面,REY、Ga、Al以及其他微量元素如Th、Sc、Pb和Cr与Fe丰度密切相关。由于所有这些元素主要由有机胶体携带,我们认为胶体对藻类表面的吸收控制了这些金属的生物积累。它们被藻类同化或内化的生物学途径尚未确定。这个过程对这些生物至关重要,因为有机胶体似乎是它们的主要来源铁,一种必需的营养物质。然而,它也使一些潜在的有毒金属(例如铅)在藻类中积累,对沿海生态系统的整体健康产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosphere
Chemosphere 环境科学-环境科学
CiteScore
15.80
自引率
8.00%
发文量
4975
审稿时长
3.4 months
期刊介绍: Chemosphere, being an international multidisciplinary journal, is dedicated to publishing original communications and review articles on chemicals in the environment. The scope covers a wide range of topics, including the identification, quantification, behavior, fate, toxicology, treatment, and remediation of chemicals in the bio-, hydro-, litho-, and atmosphere, ensuring the broad dissemination of research in this field.
期刊最新文献
Short- and medium-chain polychlorinated alkanes in the air of Athens, Greece Allelochemicals degradation and multifarious plant growth promoting potential of two Bacillus spp.: Insights into genomic potential and abiotic stress alleviation Role of surface functional groups in the adsorption behavior of microcystin-LR on graphene surfaces Unraveling adaptive resilience, tolerance mechanisms, and mitigation potential of roadside tree species to vehicular emissions across urban habitats Investigation of common and unreported parabens alongside other plastic-related contaminants in human milk using non-targeted strategies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1