Responses of soil microbial community structure under litter to changes in precipitation and nitrogen addition in a desert steppe

IF 3.7 2区 农林科学 Q1 ECOLOGY European Journal of Soil Biology Pub Date : 2024-11-30 DOI:10.1016/j.ejsobi.2024.103696
Jinpeng Ma , Lin Chen , Danbo Pang , Yinglong Chen , Mengyao Wu , Yaqi Zhang , Wenqiang He , Xuebin Li
{"title":"Responses of soil microbial community structure under litter to changes in precipitation and nitrogen addition in a desert steppe","authors":"Jinpeng Ma ,&nbsp;Lin Chen ,&nbsp;Danbo Pang ,&nbsp;Yinglong Chen ,&nbsp;Mengyao Wu ,&nbsp;Yaqi Zhang ,&nbsp;Wenqiang He ,&nbsp;Xuebin Li","doi":"10.1016/j.ejsobi.2024.103696","DOIUrl":null,"url":null,"abstract":"<div><div>Soil microorganisms are essential in maintaining terrestrial ecosystem function and are central drivers of soil-plant nutrient cycling. However, relatively few studies have explored the impact of precipitation and nitrogen (N) addition on soil microbial community structure beneath litter. In this study, we conducted a field simulation control experiment on litter decomposition under varying precipitation regimes (normal, increased by 30 %, and decreased by 30 %) and N addition levels (0 and 10 g m<sup>−2</sup> y<sup>−1</sup>) in the desert steppe of Yanchi County, China. Our findings revealed that changes in precipitation and N addition promoted litter decomposition and caused the accumulation of soil nutrients. Specifically, N addition significantly increased nitrate nitrogen (51.95 %), ammonium nitrogen (42.92 %), soil organic carbon (6.81 %), and total phosphorus (7.82 %)(<em>P</em><0.05), decreased precipitation significantly elevated contents of nitrate nitrogen (26.80 %), total nitrogen (24.47 %), soil organic carbon (37.62 %), total phosphorus (22.78 %), and microbial biomass C (33.20 %) (<em>P</em><0.05). N addition decreased microbial biomarkers content by 1.13 %, but increased microbial diversity indices (<em>Shannon-Wiener</em> index (1.53 %)<em>, Brillouin</em> diversity index (0.54 %)<em>, Pielou</em> evenness index (1.12 %)<em>, Simpson</em> dominance index (0.91 %)<em>, Mcintosh</em> diversity index (1.11 %)) (<em>P</em><0.05). Meanwhile, decreased precipitation significantly enhanced microbial biomarkers content by 5.83 % and diversity indices (<em>Shannon-Wiener</em> index (3.67 %)<em>, Brillouin</em> diversity index (2.16 %)<em>, Pielou</em> evenness index (1.55 %)<em>, Simpson</em> dominance index (1.82 %)<em>, Mcintosh</em> diversity index (2.63 %)) (<em>P</em><0.05). We indicated the decreased precipitation enhanced the effect of N addition on microbial community and diversity, while increased precipitation showed the opposite trend. Redundancy analysis highlighted MBC as a critical factor influencing microbial community structure, accounting for 35.3 % of the variation (<em>P</em><0.01). This study provides valuable insights into managing and conserving desert steppe ecosystems.</div></div>","PeriodicalId":12057,"journal":{"name":"European Journal of Soil Biology","volume":"124 ","pages":"Article 103696"},"PeriodicalIF":3.7000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Soil Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S116455632400102X","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Soil microorganisms are essential in maintaining terrestrial ecosystem function and are central drivers of soil-plant nutrient cycling. However, relatively few studies have explored the impact of precipitation and nitrogen (N) addition on soil microbial community structure beneath litter. In this study, we conducted a field simulation control experiment on litter decomposition under varying precipitation regimes (normal, increased by 30 %, and decreased by 30 %) and N addition levels (0 and 10 g m−2 y−1) in the desert steppe of Yanchi County, China. Our findings revealed that changes in precipitation and N addition promoted litter decomposition and caused the accumulation of soil nutrients. Specifically, N addition significantly increased nitrate nitrogen (51.95 %), ammonium nitrogen (42.92 %), soil organic carbon (6.81 %), and total phosphorus (7.82 %)(P<0.05), decreased precipitation significantly elevated contents of nitrate nitrogen (26.80 %), total nitrogen (24.47 %), soil organic carbon (37.62 %), total phosphorus (22.78 %), and microbial biomass C (33.20 %) (P<0.05). N addition decreased microbial biomarkers content by 1.13 %, but increased microbial diversity indices (Shannon-Wiener index (1.53 %), Brillouin diversity index (0.54 %), Pielou evenness index (1.12 %), Simpson dominance index (0.91 %), Mcintosh diversity index (1.11 %)) (P<0.05). Meanwhile, decreased precipitation significantly enhanced microbial biomarkers content by 5.83 % and diversity indices (Shannon-Wiener index (3.67 %), Brillouin diversity index (2.16 %), Pielou evenness index (1.55 %), Simpson dominance index (1.82 %), Mcintosh diversity index (2.63 %)) (P<0.05). We indicated the decreased precipitation enhanced the effect of N addition on microbial community and diversity, while increased precipitation showed the opposite trend. Redundancy analysis highlighted MBC as a critical factor influencing microbial community structure, accounting for 35.3 % of the variation (P<0.01). This study provides valuable insights into managing and conserving desert steppe ecosystems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
European Journal of Soil Biology
European Journal of Soil Biology 环境科学-生态学
CiteScore
6.90
自引率
0.00%
发文量
51
审稿时长
27 days
期刊介绍: The European Journal of Soil Biology covers all aspects of soil biology which deal with microbial and faunal ecology and activity in soils, as well as natural ecosystems or biomes connected to ecological interests: biodiversity, biological conservation, adaptation, impact of global changes on soil biodiversity and ecosystem functioning and effects and fate of pollutants as influenced by soil organisms. Different levels in ecosystem structure are taken into account: individuals, populations, communities and ecosystems themselves. At each level, different disciplinary approaches are welcomed: molecular biology, genetics, ecophysiology, ecology, biogeography and landscape ecology.
期刊最新文献
Responses of soil microbial community structure under litter to changes in precipitation and nitrogen addition in a desert steppe Coupling methane oxidation and N2 fixation under methanogenic conditions in contrasting environments In-depth insights into carbohydrate-active enzyme genes regarding the disparities in soil organic carbon after 12-year rotational cropping system field study Nutrient supply enhances positive priming of soil organic C under straw amendment and accelerates the incorporation of straw-derived C into organic C pool in paddy soils Dynamics of nitrogen mineralization and nitrogen cycling functional genes in response to soil pore size distribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1