The integration of photovoltaic (PV) power into electrical grids introduces significant uncertainty due to the inherent volatility and intermittency of solar energy, underscoring the need for precise short and medium-term PV power forecasting. Despite the superior performance of Transformer-based time series methods, their application to PV power prediction remains suboptimal. In response to this deficiency, this paper proposes a novel attention mechanism that aggregates fluctuations across multiple time scales. This mechanism enhances the segmentation and extraction of nonlinear correlations between PV power outputs and meteorological factors, assigning variable weights to patterns of change across different time scales. Furthermore, a novel approach for selecting similar days is also developed based on contrastive learning, which enables self-supervised identification of similarities among PV power samples and enhances the model’s attention to local dynamic variations. Comparative analysis with eight state-of-the-art benchmark methods shows that the proposed MFA-attention model achieves lower prediction errors and improved effectiveness.
期刊介绍:
The journal covers theoretical developments in electrical power and energy systems and their applications. The coverage embraces: generation and network planning; reliability; long and short term operation; expert systems; neural networks; object oriented systems; system control centres; database and information systems; stock and parameter estimation; system security and adequacy; network theory, modelling and computation; small and large system dynamics; dynamic model identification; on-line control including load and switching control; protection; distribution systems; energy economics; impact of non-conventional systems; and man-machine interfaces.
As well as original research papers, the journal publishes short contributions, book reviews and conference reports. All papers are peer-reviewed by at least two referees.