{"title":"Functionally graded lattice structures with tailored stiffness and energy absorption","authors":"Stephen Daynes , Stefanie Feih","doi":"10.1016/j.ijmecsci.2024.109861","DOIUrl":null,"url":null,"abstract":"<div><div>Lattice structures are lightweight and are known to exhibit excellent energy absorbing capability when subject to compressive loading. In this paper, a new analytical model for the stiffness, strength, and energy absorption of additively manufactured functionally graded lattice structures is presented, leading to the establishment of a new energy absorption optimisation approach. The influence of cell orientation, cell aspect ratio, and cell relative density on the mechanical properties is characterised. The optimal through-thickness density distribution to maximise energy absorption is determined, subject to mass and initial stiffness constraints. Energy absorption is shown experimentally to increase by up to 67.1 % via tailored through-thickness grading of the structure's relative density. Finite element models are also developed to accurately describe the mechanical performance of these functionally graded lattice structures. These models provide valuable insight into the properties of functionally graded lattice structures and can serve as a basis for the tailored design of lightweight energy absorbers.</div></div>","PeriodicalId":56287,"journal":{"name":"International Journal of Mechanical Sciences","volume":"285 ","pages":"Article 109861"},"PeriodicalIF":7.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020740324009020","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lattice structures are lightweight and are known to exhibit excellent energy absorbing capability when subject to compressive loading. In this paper, a new analytical model for the stiffness, strength, and energy absorption of additively manufactured functionally graded lattice structures is presented, leading to the establishment of a new energy absorption optimisation approach. The influence of cell orientation, cell aspect ratio, and cell relative density on the mechanical properties is characterised. The optimal through-thickness density distribution to maximise energy absorption is determined, subject to mass and initial stiffness constraints. Energy absorption is shown experimentally to increase by up to 67.1 % via tailored through-thickness grading of the structure's relative density. Finite element models are also developed to accurately describe the mechanical performance of these functionally graded lattice structures. These models provide valuable insight into the properties of functionally graded lattice structures and can serve as a basis for the tailored design of lightweight energy absorbers.
期刊介绍:
The International Journal of Mechanical Sciences (IJMS) serves as a global platform for the publication and dissemination of original research that contributes to a deeper scientific understanding of the fundamental disciplines within mechanical, civil, and material engineering.
The primary focus of IJMS is to showcase innovative and ground-breaking work that utilizes analytical and computational modeling techniques, such as Finite Element Method (FEM), Boundary Element Method (BEM), and mesh-free methods, among others. These modeling methods are applied to diverse fields including rigid-body mechanics (e.g., dynamics, vibration, stability), structural mechanics, metal forming, advanced materials (e.g., metals, composites, cellular, smart) behavior and applications, impact mechanics, strain localization, and other nonlinear effects (e.g., large deflections, plasticity, fracture).
Additionally, IJMS covers the realms of fluid mechanics (both external and internal flows), tribology, thermodynamics, and materials processing. These subjects collectively form the core of the journal's content.
In summary, IJMS provides a prestigious platform for researchers to present their original contributions, shedding light on analytical and computational modeling methods in various areas of mechanical engineering, as well as exploring the behavior and application of advanced materials, fluid mechanics, thermodynamics, and materials processing.