{"title":"Enhanced catalytic activity of i-MXenes for CO2 reduction reaction by ordered metal atomic vacancies: A DFT study","authors":"Huichun Xue, Yitong Chen, Lin Zhu, An Du","doi":"10.1016/j.surfin.2024.105535","DOIUrl":null,"url":null,"abstract":"<div><div>Developing efficient catalysts to convert CO<sub>2</sub> into value-added products is important for mitigating the greenhouse effect and energy shortage. MXene materials are regarded as promising catalysts owing to their unique two-dimensional structure and superior conductivity. Recently, several i-MXenes (M<sub>1.33</sub>C(OH)<sub>2</sub>, M = V, Mo, W) with ordered metal vacancies have been synthesized. Their performance in catalyzing CO<sub>2</sub>RR is also highly anticipated. Using density functional theory calculations, we systematically investigate the catalytic performances of −OH-terminated i-MXenes. V<sub>1.33</sub>C(OH)<sub>2</sub>, Mo<sub>1.33</sub>C(OH)<sub>2</sub>, and W<sub>1.33</sub>C(OH)<sub>2</sub> are predicted to have low limiting potentials of −0.32, −0.39, and −0.15 V, respectively. Among these materials, W<sub>1.33</sub>C(OH)<sub>2</sub> is considered as a promising catalyst, with not only high catalytic activity but also high selectivity. Compared with traditional MXenes (M<sub>2</sub>C(OH)<sub>2</sub>), the increased catalytic activity is attributed to the strong O−H bond produced by metal vacancies, which prevents H from detaching from O to form low-energy species with intermediates.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"56 ","pages":"Article 105535"},"PeriodicalIF":5.7000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024016900","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing efficient catalysts to convert CO2 into value-added products is important for mitigating the greenhouse effect and energy shortage. MXene materials are regarded as promising catalysts owing to their unique two-dimensional structure and superior conductivity. Recently, several i-MXenes (M1.33C(OH)2, M = V, Mo, W) with ordered metal vacancies have been synthesized. Their performance in catalyzing CO2RR is also highly anticipated. Using density functional theory calculations, we systematically investigate the catalytic performances of −OH-terminated i-MXenes. V1.33C(OH)2, Mo1.33C(OH)2, and W1.33C(OH)2 are predicted to have low limiting potentials of −0.32, −0.39, and −0.15 V, respectively. Among these materials, W1.33C(OH)2 is considered as a promising catalyst, with not only high catalytic activity but also high selectivity. Compared with traditional MXenes (M2C(OH)2), the increased catalytic activity is attributed to the strong O−H bond produced by metal vacancies, which prevents H from detaching from O to form low-energy species with intermediates.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)