Qiang Li , Zhengfu Ning , Weitian Wang , Zejiang Jia , Ying Kang , Xiqian Zheng , Kangbo Zhao
{"title":"Electrochemical modulation of oil-water interfaces: Effects on interfacial tension and molecular composition","authors":"Qiang Li , Zhengfu Ning , Weitian Wang , Zejiang Jia , Ying Kang , Xiqian Zheng , Kangbo Zhao","doi":"10.1016/j.surfin.2025.106165","DOIUrl":null,"url":null,"abstract":"<div><div>The application of a direct current (DC) electric field can effectively reduce interfacial tension, thereby enhancing fluid permeability and improving the potential for oil reservoir exploitation. This study investigates the effects of varying DC voltages on oil-water interfacial tension, considering parameters such as the pH of the aqueous phase, ion concentration, the composition of the oil phase (including its four-component makeup), oxidation–reduction potential, and molecular composition from an electrochemical perspective. The results demonstrate that the introduction of a DC electric field significantly reduces interfacial tension, with the effect becoming more pronounced as the voltage increases. Notably, in NaHCO<sub>3</sub>-based formation water, the reduction in interfacial tension is especially remarkable, from 12.63mN/m to 0.08mN/m. Additionally, the reduction in interfacial tension is positively correlated with an increase in the pH of the aqueous solution and is more responsive to sodium ions compared to calcium ions. Concerning the oil components, the application of a DC electric field results in an approximate increase of 2% in asphaltenes and 10% in resins. The increase in resin content is one of the key factors contributing to the reduction in interfacial tension. Enhanced oxidative conditions promote the formation of asphaltenes and resins, while concomitant reductive reactions lead to an increase in methylene content and its branched structures. Crucially, the increase in carboxylate ion content plays a decisive role in the reduction of interfacial tension. This study not only refines our understanding of the mechanisms by which DC electric fields reduce oil-water interfacial tension but also provides new insights into the principles and mechanisms behind the improvement of crude oil recovery. These findings contribute to the advancement and broader application of this technology.</div></div>","PeriodicalId":22081,"journal":{"name":"Surfaces and Interfaces","volume":"62 ","pages":"Article 106165"},"PeriodicalIF":5.7000,"publicationDate":"2025-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surfaces and Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023025004249","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The application of a direct current (DC) electric field can effectively reduce interfacial tension, thereby enhancing fluid permeability and improving the potential for oil reservoir exploitation. This study investigates the effects of varying DC voltages on oil-water interfacial tension, considering parameters such as the pH of the aqueous phase, ion concentration, the composition of the oil phase (including its four-component makeup), oxidation–reduction potential, and molecular composition from an electrochemical perspective. The results demonstrate that the introduction of a DC electric field significantly reduces interfacial tension, with the effect becoming more pronounced as the voltage increases. Notably, in NaHCO3-based formation water, the reduction in interfacial tension is especially remarkable, from 12.63mN/m to 0.08mN/m. Additionally, the reduction in interfacial tension is positively correlated with an increase in the pH of the aqueous solution and is more responsive to sodium ions compared to calcium ions. Concerning the oil components, the application of a DC electric field results in an approximate increase of 2% in asphaltenes and 10% in resins. The increase in resin content is one of the key factors contributing to the reduction in interfacial tension. Enhanced oxidative conditions promote the formation of asphaltenes and resins, while concomitant reductive reactions lead to an increase in methylene content and its branched structures. Crucially, the increase in carboxylate ion content plays a decisive role in the reduction of interfacial tension. This study not only refines our understanding of the mechanisms by which DC electric fields reduce oil-water interfacial tension but also provides new insights into the principles and mechanisms behind the improvement of crude oil recovery. These findings contribute to the advancement and broader application of this technology.
期刊介绍:
The aim of the journal is to provide a respectful outlet for ''sound science'' papers in all research areas on surfaces and interfaces. We define sound science papers as papers that describe new and well-executed research, but that do not necessarily provide brand new insights or are merely a description of research results.
Surfaces and Interfaces publishes research papers in all fields of surface science which may not always find the right home on first submission to our Elsevier sister journals (Applied Surface, Surface and Coatings Technology, Thin Solid Films)