Carbon balance model of groundwater-lake systems in arid and semi-arid areas and its application

IF 5.4 1区 农林科学 Q1 GEOSCIENCES, MULTIDISCIPLINARY Catena Pub Date : 2024-12-01 DOI:10.1016/j.catena.2024.108610
Lu Li , Shaogang Dong , Yaxin Ji , Xuchao Zang , Xuemin Han
{"title":"Carbon balance model of groundwater-lake systems in arid and semi-arid areas and its application","authors":"Lu Li ,&nbsp;Shaogang Dong ,&nbsp;Yaxin Ji ,&nbsp;Xuchao Zang ,&nbsp;Xuemin Han","doi":"10.1016/j.catena.2024.108610","DOIUrl":null,"url":null,"abstract":"<div><div>A series of carbon-related hydrogeochemical processes occurring during groundwater runoff and recharge to the lake significantly impact the terrestrial carbon cycle. However, the migration and transformation of carbon in a complete groundwater-lake system has been reported rarely. In this paper, the Daihai Basin in Inner Mongolia was taken as an example and carbon balance equation of the groundwater-lake system was constructed by using the principle of mass conservation and hydrogeochemical simulation, thereby analyzing the migration and transformation mechanism of DIC in the process of groundwater runoff and recharge to the lake. The results showed that the increment of DIC in groundwater-lake system triggered by groundwater runoff and recharge to the lake in Daihai Basin was 4264.87 t/a (8.53 g/(m<sup>2</sup>.a)), and the net carbon fixed from the soil and the atmosphere (as CO<sub>2</sub>) was 5850.24 t/a (11.70 g/(m<sup>2</sup>.a)). Specifically, the carbon absorbed from the soil during the recharge of atmospheric precipitation to groundwater via the vadose zone was 5607.65 t/a (12.41 g/(m<sup>2</sup>.a)); the carbon absorbed from soil (or atmosphere) by water–rock interaction during groundwater runoff (as CO<sub>2</sub>) was 529.55 t/a (1.17 g/(m<sup>2</sup>.a)); the carbon absorbed from the atmosphere during the mixing process between groundwater and Daihai was 179.62 t/a (3.78 g/(m<sup>2</sup>.a)); the carbon emitted to the atmosphere due to pressure changes during artificial exploitation of groundwater was 466.58 t/a (1.03 g/(m<sup>2</sup>. a)). The CO<sub>2</sub> of the vadose zone is the main carbon source of groundwater, and the conversion of carbonate to bicarbonate during the mixing process between groundwater and lake contributes to the lake’s carbon sink function. The groundwater-lake system in arid and semi-arid areas has considerable carbon sequestration capacity and is an important carbon sink for terrestrial ecosystems.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":"248 ","pages":"Article 108610"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224008075","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

A series of carbon-related hydrogeochemical processes occurring during groundwater runoff and recharge to the lake significantly impact the terrestrial carbon cycle. However, the migration and transformation of carbon in a complete groundwater-lake system has been reported rarely. In this paper, the Daihai Basin in Inner Mongolia was taken as an example and carbon balance equation of the groundwater-lake system was constructed by using the principle of mass conservation and hydrogeochemical simulation, thereby analyzing the migration and transformation mechanism of DIC in the process of groundwater runoff and recharge to the lake. The results showed that the increment of DIC in groundwater-lake system triggered by groundwater runoff and recharge to the lake in Daihai Basin was 4264.87 t/a (8.53 g/(m2.a)), and the net carbon fixed from the soil and the atmosphere (as CO2) was 5850.24 t/a (11.70 g/(m2.a)). Specifically, the carbon absorbed from the soil during the recharge of atmospheric precipitation to groundwater via the vadose zone was 5607.65 t/a (12.41 g/(m2.a)); the carbon absorbed from soil (or atmosphere) by water–rock interaction during groundwater runoff (as CO2) was 529.55 t/a (1.17 g/(m2.a)); the carbon absorbed from the atmosphere during the mixing process between groundwater and Daihai was 179.62 t/a (3.78 g/(m2.a)); the carbon emitted to the atmosphere due to pressure changes during artificial exploitation of groundwater was 466.58 t/a (1.03 g/(m2. a)). The CO2 of the vadose zone is the main carbon source of groundwater, and the conversion of carbonate to bicarbonate during the mixing process between groundwater and lake contributes to the lake’s carbon sink function. The groundwater-lake system in arid and semi-arid areas has considerable carbon sequestration capacity and is an important carbon sink for terrestrial ecosystems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Catena
Catena 环境科学-地球科学综合
CiteScore
10.50
自引率
9.70%
发文量
816
审稿时长
54 days
期刊介绍: Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment. Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.
期刊最新文献
Ground-truthing of a data driven landform map in southwest Australia Precipitation events and long-term nitrogen addition synergistically stimulate heterotrophic respiration in a semi-arid meadow steppe Carbon balance model of groundwater-lake systems in arid and semi-arid areas and its application Mowing in place of conventional grazing increased soil organic carbon stability and altered depth-dependent protection mechanisms Distribution of vanadium in the pedosphere of China and its natural and anthropogenic influencing factors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1