Minsu Park , Kwonyun Lee , Min Sung Kang , Sujeong Woo , Wootaek Choi , Hyein Kim , Woong Kwon , Junghyun Choi , Sung Beom Cho , Euigyung Jeong , Patrick Joohyun Kim
{"title":"Crystallinity and composition engineering of organic crystal derived 1D carbons for advanced Li-metal based batteries","authors":"Minsu Park , Kwonyun Lee , Min Sung Kang , Sujeong Woo , Wootaek Choi , Hyein Kim , Woong Kwon , Junghyun Choi , Sung Beom Cho , Euigyung Jeong , Patrick Joohyun Kim","doi":"10.1016/j.carbon.2024.119870","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium (Li) has garnered considerable interest in the battery industry owing to its outstanding theoretical capacity (3860 mAh g<sup>−1</sup>) and low redox potential (−3.04 V vs. standard hydrogen electrode). Unfortunately, the practical applications of Li-metal batteries (LMBs) are impeded by low coulombic efficiency and dendritic Li formation during the charging/discharging process. One of viable strategies for overcoming these challenges involves the use of N-rich carbons in designing functional separators and current collectors. In this study, the potential of organic crystal material (Pigment Red 122; PR122) as a carbonizable nitrogen-rich material was investigated to assess its impacts on the electrochemical performance of Li-ion batteries (LIBs) and LMBs. The carbonization temperature of PR122 was precisely controlled to alter the overall content of nitrogen element in the carbon backbone. Each prepared N-rich carbon was applied to modify the surface of each separator and current collector. The PR122-derived carbon pyrolyzed at a high temperature of 1500 °C (PR|C1500) demonstrated lower discharge capacity. However, it exhibited better electrochemical kinetics than the PR122-derived carbon pyrolyzed at a lower temperature of 600 °C (PR|C600) in LIBs. In the case of LMBs, the Li/Cu cell with a PR|C600 coated separator delivered better cycle stability than the Li/Cu cell with a PR|C1500 coated separator. These results suggest that both the nitrogen content (specifically pyridinic-N and pyrrolic-N) and degree of crystallinity in the carbon platform significantly affect the electrochemical stability and kinetics of LIBs and LMBs. The foregoing is further verified by analysis using the density functional theory-based finite element method.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"233 ","pages":"Article 119870"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0008622324010893","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lithium (Li) has garnered considerable interest in the battery industry owing to its outstanding theoretical capacity (3860 mAh g−1) and low redox potential (−3.04 V vs. standard hydrogen electrode). Unfortunately, the practical applications of Li-metal batteries (LMBs) are impeded by low coulombic efficiency and dendritic Li formation during the charging/discharging process. One of viable strategies for overcoming these challenges involves the use of N-rich carbons in designing functional separators and current collectors. In this study, the potential of organic crystal material (Pigment Red 122; PR122) as a carbonizable nitrogen-rich material was investigated to assess its impacts on the electrochemical performance of Li-ion batteries (LIBs) and LMBs. The carbonization temperature of PR122 was precisely controlled to alter the overall content of nitrogen element in the carbon backbone. Each prepared N-rich carbon was applied to modify the surface of each separator and current collector. The PR122-derived carbon pyrolyzed at a high temperature of 1500 °C (PR|C1500) demonstrated lower discharge capacity. However, it exhibited better electrochemical kinetics than the PR122-derived carbon pyrolyzed at a lower temperature of 600 °C (PR|C600) in LIBs. In the case of LMBs, the Li/Cu cell with a PR|C600 coated separator delivered better cycle stability than the Li/Cu cell with a PR|C1500 coated separator. These results suggest that both the nitrogen content (specifically pyridinic-N and pyrrolic-N) and degree of crystallinity in the carbon platform significantly affect the electrochemical stability and kinetics of LIBs and LMBs. The foregoing is further verified by analysis using the density functional theory-based finite element method.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.