Potassium storage behavior and low-temperature performance of typical carbon anodes in potassium-ion hybrid capacitors enabled by Co-intercalation graphite chemistry
Hongfei Zhang , Jinhui Zhao , Chongchong Ren , Stephen King , Hongtao Sun , Xin Zhang , Gongkai Wang
{"title":"Potassium storage behavior and low-temperature performance of typical carbon anodes in potassium-ion hybrid capacitors enabled by Co-intercalation graphite chemistry","authors":"Hongfei Zhang , Jinhui Zhao , Chongchong Ren , Stephen King , Hongtao Sun , Xin Zhang , Gongkai Wang","doi":"10.1016/j.carbon.2024.119868","DOIUrl":null,"url":null,"abstract":"<div><div>Carbon materials are widely explored as anodes for potassium-ion storage, yet the slow K<sup>+</sup> desolvation process in electrolyte at low temperatures presents a kinetic limitation that impedes reliable operation in specific conditions. In this work, we systematically investigate the potassium storage behavior of four typical carbon materials—graphite, hard carbon, activated carbon, and graphene—in a 1 M KFSI-Diglyme electrolyte, highlighting a co-intercalation approach that significantly reduces the desolvation energy barrier. The formation of ternary graphite intercalation compounds (<em>t</em>-GICs) through co-intercalation in graphite introduces weak interlayer interactions between the graphite layers and solvated K<sup>+</sup>, which accelerate K<sup>+</sup> diffusion in the anode, thereby enhancing reaction kinetics. This unique mechanism enables the graphite anode to deliver remarkable rate performance (98 mAh g<sup>−1</sup> at 0.05 A g<sup>−1</sup> and 76 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup>) even at −20 °C. Furthermore, potassium-ion hybrid capacitors (PICs) using the graphite anode achieve impressive cycling stability, with 88 % capacity retention after 2000 cycles at 2 A g<sup>−1</sup> and a high power density of 11.1 kW kg<sup>−1</sup> (57 Wh kg<sup>−1</sup>) at −20 °C. These findings provide key insights into the design of robust potassium-ion storage devices capable of sustaining high performance in low-temperature environments.</div></div>","PeriodicalId":262,"journal":{"name":"Carbon","volume":"233 ","pages":"Article 119868"},"PeriodicalIF":10.5000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbon","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S000862232401087X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Carbon materials are widely explored as anodes for potassium-ion storage, yet the slow K+ desolvation process in electrolyte at low temperatures presents a kinetic limitation that impedes reliable operation in specific conditions. In this work, we systematically investigate the potassium storage behavior of four typical carbon materials—graphite, hard carbon, activated carbon, and graphene—in a 1 M KFSI-Diglyme electrolyte, highlighting a co-intercalation approach that significantly reduces the desolvation energy barrier. The formation of ternary graphite intercalation compounds (t-GICs) through co-intercalation in graphite introduces weak interlayer interactions between the graphite layers and solvated K+, which accelerate K+ diffusion in the anode, thereby enhancing reaction kinetics. This unique mechanism enables the graphite anode to deliver remarkable rate performance (98 mAh g−1 at 0.05 A g−1 and 76 mAh g−1 at 1 A g−1) even at −20 °C. Furthermore, potassium-ion hybrid capacitors (PICs) using the graphite anode achieve impressive cycling stability, with 88 % capacity retention after 2000 cycles at 2 A g−1 and a high power density of 11.1 kW kg−1 (57 Wh kg−1) at −20 °C. These findings provide key insights into the design of robust potassium-ion storage devices capable of sustaining high performance in low-temperature environments.
期刊介绍:
The journal Carbon is an international multidisciplinary forum for communicating scientific advances in the field of carbon materials. It reports new findings related to the formation, structure, properties, behaviors, and technological applications of carbons. Carbons are a broad class of ordered or disordered solid phases composed primarily of elemental carbon, including but not limited to carbon black, carbon fibers and filaments, carbon nanotubes, diamond and diamond-like carbon, fullerenes, glassy carbon, graphite, graphene, graphene-oxide, porous carbons, pyrolytic carbon, and other sp2 and non-sp2 hybridized carbon systems. Carbon is the companion title to the open access journal Carbon Trends. Relevant application areas for carbon materials include biology and medicine, catalysis, electronic, optoelectronic, spintronic, high-frequency, and photonic devices, energy storage and conversion systems, environmental applications and water treatment, smart materials and systems, and structural and thermal applications.