Post-processing of Inconel 718 superalloy by Laser-based Powder Bed Fusion: Microstructures and properties evaluation

IF 6.1 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials Science and Engineering: A Pub Date : 2024-11-28 DOI:10.1016/j.msea.2024.147601
Subhendu Naskar , S. Suryakumar , Bharat B. Panigrahi
{"title":"Post-processing of Inconel 718 superalloy by Laser-based Powder Bed Fusion: Microstructures and properties evaluation","authors":"Subhendu Naskar ,&nbsp;S. Suryakumar ,&nbsp;Bharat B. Panigrahi","doi":"10.1016/j.msea.2024.147601","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, IN718 superalloy has been additively manufactured through Laser-based Powder Bed Fusion (PBF) process. The present investigation aims to study the effect of post printing heat treatments on the metallurgical aspects, such as phases, crystallographic texture, microstructure evolutions and the mechanical properties. Heat treatment optimization has been pursued to achieve a better combination of strength and ductility. PBF fabricated material was further subjected to different heat treatments, comprising of homogenizing, solutionizing and ageing. Material was characterized with respect to the building direction (BD). As-printed specimen exhibits face centered cubic (FCC) γ matrix along with minor amounts of other phases. The melt pool boundaries were found to be rich in Niobium and Molybdenum, indicating segregation during fabrication. Upon post-heat treatments these segregations dissolved considerably. Heat treated microstructure exhibited homogeneously dispersed γ′ and γ′′ phases, and relatively small fractions of carbides, acicular and plate shaped δ phases. Heat treatments led to a significant increase in hardness (by about 54 %) and tensile strength (by about 45 %) while retaining considerable ductility.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"921 ","pages":"Article 147601"},"PeriodicalIF":6.1000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509324015326","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, IN718 superalloy has been additively manufactured through Laser-based Powder Bed Fusion (PBF) process. The present investigation aims to study the effect of post printing heat treatments on the metallurgical aspects, such as phases, crystallographic texture, microstructure evolutions and the mechanical properties. Heat treatment optimization has been pursued to achieve a better combination of strength and ductility. PBF fabricated material was further subjected to different heat treatments, comprising of homogenizing, solutionizing and ageing. Material was characterized with respect to the building direction (BD). As-printed specimen exhibits face centered cubic (FCC) γ matrix along with minor amounts of other phases. The melt pool boundaries were found to be rich in Niobium and Molybdenum, indicating segregation during fabrication. Upon post-heat treatments these segregations dissolved considerably. Heat treated microstructure exhibited homogeneously dispersed γ′ and γ′′ phases, and relatively small fractions of carbides, acicular and plate shaped δ phases. Heat treatments led to a significant increase in hardness (by about 54 %) and tensile strength (by about 45 %) while retaining considerable ductility.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
期刊最新文献
Effect of laser surface treatment on microstructural evolution and mechanical properties of a Co–Cr–Fe–Ni–Mo medium–entropy alloy Laser powder bed fusion of a composition-modified IN738 alloy based on thermodynamic calculations In-situ dual force: A novel pathway to improving the mechanical properties of resistance spot welds Crack inhibition of non-weldable Inconel 738 alloy in ultrasound-assisted laser directed energy deposition Post-processing of Inconel 718 superalloy by Laser-based Powder Bed Fusion: Microstructures and properties evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1