Study on the properties of Cr/CrxN films prepared by magnetron sputtering and ion implantation alternately

IF 3.8 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Vacuum Pub Date : 2024-11-23 DOI:10.1016/j.vacuum.2024.113874
Feilong Wang , Shuo Wang , Zhiyu Chi , Junbo Niu , Xinghong Zhang , Jinbao Huang , Xinxin Ma
{"title":"Study on the properties of Cr/CrxN films prepared by magnetron sputtering and ion implantation alternately","authors":"Feilong Wang ,&nbsp;Shuo Wang ,&nbsp;Zhiyu Chi ,&nbsp;Junbo Niu ,&nbsp;Xinghong Zhang ,&nbsp;Jinbao Huang ,&nbsp;Xinxin Ma","doi":"10.1016/j.vacuum.2024.113874","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, the efficacy of Cr/Cr<sub>x</sub>N multilayer films, fabricated on 8Cr4Mo4V bearing steel substrates via Plasma-Based Ion Implantation and Deposition (PBIID) technique, was thoroughly examined. Utilizing a multifunctional coating apparatus, the surface engineering process was optimized for efficiency and precision, yielding controllable periodic Cr/Cr<sub>x</sub>N films. Characterizations conducted with XPS, XRD, and TEM disclosed a 'stacked' stratified film structure that resonates with the process periodicity, characterized by a 17 nm cycle and consisting of dispersed nanocrystalline (Cr, CrN, and Cr<sub>2</sub>N). These multilayer structures markedly enhanced the corrosion resistance of the material, with the treated 8Cr4Mo4V specimens demonstrating a corrosion current density of 2.47 × 10<sup>−7</sup> A cm<sup>−2</sup>, which is an order of magnitude reduction compared to the original sample of 7.60 × 10<sup>−6</sup> A cm<sup>−2</sup>. A series equivalent circuit model was developed to simulate the corrosion dynamics. The nitridation effect induced by ion implantation was instrumental in attaining a surface nanohardness of 19 GPa, approximately doubling the original hardness, while also achieving a coating-substrate adhesion force of 105 mN due to the peening effect. This method can be applied to improve the corrosion resistance life of precision parts, especially complex parts.</div></div>","PeriodicalId":23559,"journal":{"name":"Vacuum","volume":"232 ","pages":"Article 113874"},"PeriodicalIF":3.8000,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vacuum","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0042207X24009205","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, the efficacy of Cr/CrxN multilayer films, fabricated on 8Cr4Mo4V bearing steel substrates via Plasma-Based Ion Implantation and Deposition (PBIID) technique, was thoroughly examined. Utilizing a multifunctional coating apparatus, the surface engineering process was optimized for efficiency and precision, yielding controllable periodic Cr/CrxN films. Characterizations conducted with XPS, XRD, and TEM disclosed a 'stacked' stratified film structure that resonates with the process periodicity, characterized by a 17 nm cycle and consisting of dispersed nanocrystalline (Cr, CrN, and Cr2N). These multilayer structures markedly enhanced the corrosion resistance of the material, with the treated 8Cr4Mo4V specimens demonstrating a corrosion current density of 2.47 × 10−7 A cm−2, which is an order of magnitude reduction compared to the original sample of 7.60 × 10−6 A cm−2. A series equivalent circuit model was developed to simulate the corrosion dynamics. The nitridation effect induced by ion implantation was instrumental in attaining a surface nanohardness of 19 GPa, approximately doubling the original hardness, while also achieving a coating-substrate adhesion force of 105 mN due to the peening effect. This method can be applied to improve the corrosion resistance life of precision parts, especially complex parts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁控溅射与离子注入交替制备Cr/CrxN薄膜的性能研究
在本研究中,采用等离子体离子注入沉积(PBIID)技术在8Cr4Mo4V轴承钢衬底上制备了Cr/CrxN多层膜,并对其性能进行了深入研究。利用多功能镀膜装置,优化了表面工程工艺的效率和精度,获得了可控的Cr/CrxN周期膜。通过XPS、XRD和TEM进行表征,发现了一种与工艺周期共振的“堆叠”层状膜结构,其特征为17 nm周期,由分散的纳米晶体(Cr、CrN和Cr2N)组成。这些多层结构显著提高了材料的耐腐蚀性,处理后的8Cr4Mo4V样品的腐蚀电流密度为2.47 × 10−7 a cm−2,与原始样品的7.60 × 10−6 a cm−2相比,降低了一个数量级。建立了串联等效电路模型来模拟腐蚀动力学。离子注入诱导的氮化效应有助于获得19 GPa的表面纳米硬度,大约是原始硬度的两倍,同时由于强化效应,涂层与基体的附着力达到105 mN。该方法可用于提高精密零件,特别是复杂零件的耐腐蚀寿命。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Vacuum
Vacuum 工程技术-材料科学:综合
CiteScore
6.80
自引率
17.50%
发文量
0
审稿时长
34 days
期刊介绍: Vacuum is an international rapid publications journal with a focus on short communication. All papers are peer-reviewed, with the review process for short communication geared towards very fast turnaround times. The journal also published full research papers, thematic issues and selected papers from leading conferences. A report in Vacuum should represent a major advance in an area that involves a controlled environment at pressures of one atmosphere or below. The scope of the journal includes: 1. Vacuum; original developments in vacuum pumping and instrumentation, vacuum measurement, vacuum gas dynamics, gas-surface interactions, surface treatment for UHV applications and low outgassing, vacuum melting, sintering, and vacuum metrology. Technology and solutions for large-scale facilities (e.g., particle accelerators and fusion devices). New instrumentation ( e.g., detectors and electron microscopes). 2. Plasma science; advances in PVD, CVD, plasma-assisted CVD, ion sources, deposition processes and analysis. 3. Surface science; surface engineering, surface chemistry, surface analysis, crystal growth, ion-surface interactions and etching, nanometer-scale processing, surface modification. 4. Materials science; novel functional or structural materials. Metals, ceramics, and polymers. Experiments, simulations, and modelling for understanding structure-property relationships. Thin films and coatings. Nanostructures and ion implantation.
期刊最新文献
WITHDRAWN: The Correlation between 25-Hydroxyvitamin D Levels and Testosterone Levels in Type 2 Diabetic Male Patients Development of a high-intensity compact D-D neutron generator based on RF ion sources Degradation effects of the rafts and dislocation network on creep property of single crystal superalloy at medium temperature Compositional design of slag for homogenized rare earth treatment by slag-steel interaction under vacuum Editorial Board and Vacuum units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1