Differences in gait parameters between supervised laboratory and unsupervised daily assessments of healthy adults measured with an in-shoe motion sensor system

Q2 Health Professions Smart Health Pub Date : 2024-11-26 DOI:10.1016/j.smhl.2024.100526
Hiroki Shimizu , Takanobu Saito , Shione Kashiyama , Shinichi Kawamoto , Saori Morino , Momoko Nagai-Tanima , Tomoki Aoyama
{"title":"Differences in gait parameters between supervised laboratory and unsupervised daily assessments of healthy adults measured with an in-shoe motion sensor system","authors":"Hiroki Shimizu ,&nbsp;Takanobu Saito ,&nbsp;Shione Kashiyama ,&nbsp;Shinichi Kawamoto ,&nbsp;Saori Morino ,&nbsp;Momoko Nagai-Tanima ,&nbsp;Tomoki Aoyama","doi":"10.1016/j.smhl.2024.100526","DOIUrl":null,"url":null,"abstract":"<div><div>This cross-sectional study compared the gait parameters between supervised laboratory and unsupervised daily life assessments in healthy adults. Gait was evaluated in 24 healthy young adults during 72 h of daily life and a 6-min laboratory gait at a comfortable speed. An in-shoe motion sensor system recorded gait data every 2 min, automatically detected stable gait segments by identifying repetitive movement patterns, and calculated the average of three consecutive valid gait cycles during each measurement period. Significant differences were found in walking speed (stride length divided by stride time; laboratory: 4.60 km/h vs. daily-life: 4.38 km/h), maximum (peak) dorsiflexion angle (laboratory: 29.71° vs. daily-life: 26.65°), maximum (peak) plantar flexion angle (laboratory: 74.54° vs. daily-life: 71.91°), roll angle of heel contact (laboratory: 7.46° vs. daily-life: 6.70°), maximum speed during the swing phase (laboratory: 14.49 km/h vs. daily-life: 12.68 km/h), circumduction (lateral displacement during the swing phase; laboratory: 2.68 cm vs. daily-life: 3.69 cm), toe-in/out angle (laboratory: 13.87° vs. daily-life: 15.32°), stance time (laboratory: 0.62 s vs. daily-life: 0.65 s), and pushing time (time between heel leaving and toe leaving the ground; laboratory: 0.20 s vs. daily-life: 0.21 s). The innovative aspect of this study is the comprehensive evaluation of foot-related gait parameters in real-world environments using an in-shoe motion sensor system. This approach provides ecologically valid insights into gait dynamics during daily activities, emphasizing the importance of real-world assessments for accurately evaluating gait performance and predicting adverse events such as falls. Keywords: Gait, Foot, Laboratory, Daily Life, Unsupervised Assessment, Shoe Motion Sensors.</div></div>","PeriodicalId":37151,"journal":{"name":"Smart Health","volume":"35 ","pages":"Article 100526"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Smart Health","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352648324000825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Health Professions","Score":null,"Total":0}
引用次数: 0

Abstract

This cross-sectional study compared the gait parameters between supervised laboratory and unsupervised daily life assessments in healthy adults. Gait was evaluated in 24 healthy young adults during 72 h of daily life and a 6-min laboratory gait at a comfortable speed. An in-shoe motion sensor system recorded gait data every 2 min, automatically detected stable gait segments by identifying repetitive movement patterns, and calculated the average of three consecutive valid gait cycles during each measurement period. Significant differences were found in walking speed (stride length divided by stride time; laboratory: 4.60 km/h vs. daily-life: 4.38 km/h), maximum (peak) dorsiflexion angle (laboratory: 29.71° vs. daily-life: 26.65°), maximum (peak) plantar flexion angle (laboratory: 74.54° vs. daily-life: 71.91°), roll angle of heel contact (laboratory: 7.46° vs. daily-life: 6.70°), maximum speed during the swing phase (laboratory: 14.49 km/h vs. daily-life: 12.68 km/h), circumduction (lateral displacement during the swing phase; laboratory: 2.68 cm vs. daily-life: 3.69 cm), toe-in/out angle (laboratory: 13.87° vs. daily-life: 15.32°), stance time (laboratory: 0.62 s vs. daily-life: 0.65 s), and pushing time (time between heel leaving and toe leaving the ground; laboratory: 0.20 s vs. daily-life: 0.21 s). The innovative aspect of this study is the comprehensive evaluation of foot-related gait parameters in real-world environments using an in-shoe motion sensor system. This approach provides ecologically valid insights into gait dynamics during daily activities, emphasizing the importance of real-world assessments for accurately evaluating gait performance and predicting adverse events such as falls. Keywords: Gait, Foot, Laboratory, Daily Life, Unsupervised Assessment, Shoe Motion Sensors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用鞋内运动传感器系统测量有监督的实验室和无监督的健康成人每日评估之间的步态参数差异
这项横断面研究比较了有监督的实验室和无监督的健康成人日常生活评估的步态参数。对24名健康年轻人在日常生活72小时和以舒适速度进行6分钟的实验室步态进行评估。鞋内运动传感器系统每2分钟记录一次步态数据,通过识别重复运动模式自动检测稳定的步态片段,并计算每个测量周期内连续三个有效步态周期的平均值。行走速度(步幅除以步幅时间;实验室:4.60 km/h vs.日常:4.38 km/h),最大(峰值)背屈角(实验室:29.71°vs.日常:26.65°),最大(峰值)足底屈角(实验室:74.54°vs.日常:71.91°),跟侧接触角(实验室:7.46°vs.日常:6.70°),摆动阶段的最大速度(实验室:14.49 km/h vs.日常:12.68 km/h),绕行(摆动阶段的侧向位移;实验室:2.68 cm vs.日常:3.69 cm),脚趾进出角(实验室:13.87°vs.日常:15.32°),站立时间(实验室:0.62 s vs.日常:0.65 s),推蹬时间(脚跟离开到脚趾离开地面的时间;本研究的创新之处在于使用鞋内运动传感器系统对真实环境中与足部相关的步态参数进行综合评估。这种方法为日常活动中的步态动力学提供了生态学上有效的见解,强调了真实世界评估对准确评估步态性能和预测跌倒等不良事件的重要性。关键词:步态,足部,实验室,日常生活,无监督评估,鞋运动传感器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Smart Health
Smart Health Computer Science-Computer Science Applications
CiteScore
6.50
自引率
0.00%
发文量
81
期刊最新文献
Editorial Board Smart health practices: Strategies to improve healthcare efficiency through digital twin technology Human knowledge-based artificial intelligence methods for skin cancer management: Accuracy and interpretability study SAFE: Sound Analysis for Fall Event detection using machine learning Latent Space Representation of Adversarial AutoEncoder for Human Activity Recognition: Application to a low-cost commercial force plate and inertial measurement units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1