Deciphering the mechanical strengthening mechanism: Soft metal doping in ceramic matrices-A case study of TiN-Ag films

IF 7.9 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-12-01 DOI:10.1016/j.matdes.2024.113489
Jing Luan , Fanlin Kong , Junhua Xu , Filipe Fernandes , Manuel Evaristo , Songtao Dong , Albano Cavaleiro , Hongbo Ju
{"title":"Deciphering the mechanical strengthening mechanism: Soft metal doping in ceramic matrices-A case study of TiN-Ag films","authors":"Jing Luan ,&nbsp;Fanlin Kong ,&nbsp;Junhua Xu ,&nbsp;Filipe Fernandes ,&nbsp;Manuel Evaristo ,&nbsp;Songtao Dong ,&nbsp;Albano Cavaleiro ,&nbsp;Hongbo Ju","doi":"10.1016/j.matdes.2024.113489","DOIUrl":null,"url":null,"abstract":"<div><div>Soft metals have been widely added into ceramic-based films for fully meeting the demanding requirements of green tribological applications. However, the resulting considerable increase of the mechanical strength by adding a soft metal below 5 at.%, which reversed the rule-of-mixture, was still not fully revealed. In this paper, a case study of TiN-Ag films was carried out to investigate the strengthening mechanism induced by adding soft metal in TiN-Ag composite/multilayered films deposited by magnetron sputtering. The results showed that dual-phases of fcc-TiN and fcc-Ag co-existed in the composite films with the Ag particles embedded in the matrix. In some areas of the Ag particles, with a size below 4 nm, epitaxial growth with the TiN template was detected, which obliged the lattice to be distorted and shrunken. Consequently, both hardness and elastic modulus were enhanced from 21 and 236 GPa, for the reference TiN film, to 26 and 323 GPa for the TiN-Ag composite film with 2.4 at.% Ag. The possibility of having the epitaxial growth of Ag within TiN were also confirmed by designing a TiN/Ag multilayered film with an Ag layer thickness of ∼3 nm.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113489"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008645","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Soft metals have been widely added into ceramic-based films for fully meeting the demanding requirements of green tribological applications. However, the resulting considerable increase of the mechanical strength by adding a soft metal below 5 at.%, which reversed the rule-of-mixture, was still not fully revealed. In this paper, a case study of TiN-Ag films was carried out to investigate the strengthening mechanism induced by adding soft metal in TiN-Ag composite/multilayered films deposited by magnetron sputtering. The results showed that dual-phases of fcc-TiN and fcc-Ag co-existed in the composite films with the Ag particles embedded in the matrix. In some areas of the Ag particles, with a size below 4 nm, epitaxial growth with the TiN template was detected, which obliged the lattice to be distorted and shrunken. Consequently, both hardness and elastic modulus were enhanced from 21 and 236 GPa, for the reference TiN film, to 26 and 323 GPa for the TiN-Ag composite film with 2.4 at.% Ag. The possibility of having the epitaxial growth of Ag within TiN were also confirmed by designing a TiN/Ag multilayered film with an Ag layer thickness of ∼3 nm.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
陶瓷基体中软金属掺杂的机械强化机制解读——以TiN-Ag薄膜为例
软金属已被广泛地添加到陶瓷基薄膜中,以充分满足绿色摩擦学应用的要求。然而,通过添加低于5 at的软金属,机械强度得到了相当大的提高。%,它推翻了混合规则,仍然没有完全揭示。本文以磁控溅射法制备TiN-Ag复合膜为例,研究了在TiN-Ag复合膜/多层膜中添加软金属的强化机理。结果表明:复合膜中存在fcc-TiN和fcc-Ag双相并存,Ag颗粒嵌入基体;在尺寸小于4 nm的Ag颗粒的某些区域,检测到TiN模板外延生长,导致晶格扭曲和收缩。因此,TiN- ag复合膜的硬度和弹性模量从参考TiN膜的21和236 GPa提高到2.4 at的26和323 GPa。% Ag)。通过设计一个银层厚度为~ 3nm的TiN/Ag多层薄膜,也证实了在TiN内外延生长Ag的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Processing and performance of HVAF-sprayed Fe-based bulk metallic glass coatings: A sustainable alternative Precipitate sequence, strengthening mechanism and properties of Cu-0.9Be-1.0Ni alloys prepared by powder metallurgy Effect of high-frequency beam oscillation on the microstructure and mechanical properties of deep-penetration vacuum laser-welded Inconel 718 joints Interrupted in-situ X-ray computed tomography reveals accelerated densification in recovered 7055 Al powder Achieving superior tensile and fatigue properties than conventional wrought state via hybrid additive-forging manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1