{"title":"Effect of organic matter on the expression of biochemical properties of partial nitrification immobilized filler and analysis of microbial communities","authors":"Teng Zhang, Hong Yang","doi":"10.1016/j.jwpe.2024.106654","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the effect of organic matter on the partial nitrification (PN) performance of immobilized filler. When PN filler was put into an aerobic tank containing a large amount of organic matter for long-term operation, it resulted in efficient ammonia oxidation. Next, the PN filler was removed, and a continuous-flow PN reactor with artificial water distribution was constructed at laboratory scale to investigate the performance. The PN filler exhibited good resistance to the influence of organic matter. With the increase in influent chemical oxygen demand/total ammonia nitrogen (COD/TAN) from 0.04 to 1.25, the PN performance of the immobilized filler did not change. When the influent COD/TAN was increased to 3.22, ammonia-oxidizing bacteria (AOB) activity could be maintained by increasing the air supply. Batch experiments revealed that the reactor achieved simultaneous ammonia nitrogen (NH<sub>4</sub><sup>+</sup>-N) and COD removal, which indicated that AOB in the PN filler could compete better with heterotrophs to oxidize NH<sub>4</sub><sup>+</sup>-N using dissolved oxygen compared with traditional activated sludge and biofilm methods. Nitrite accumulation rate remained above 95 % throughout the reactor's operation. High-throughput sequencing showed that AOB were always the dominant bacteria in the microbial community inside the filler, and the high tolerance of PN filler to organic matter depended on AOB abundance. This study provides technical support for achieving efficient and stable PN in COD-containing wastewater.</div></div>","PeriodicalId":17528,"journal":{"name":"Journal of water process engineering","volume":"69 ","pages":"Article 106654"},"PeriodicalIF":6.3000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of water process engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214714424018865","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the effect of organic matter on the partial nitrification (PN) performance of immobilized filler. When PN filler was put into an aerobic tank containing a large amount of organic matter for long-term operation, it resulted in efficient ammonia oxidation. Next, the PN filler was removed, and a continuous-flow PN reactor with artificial water distribution was constructed at laboratory scale to investigate the performance. The PN filler exhibited good resistance to the influence of organic matter. With the increase in influent chemical oxygen demand/total ammonia nitrogen (COD/TAN) from 0.04 to 1.25, the PN performance of the immobilized filler did not change. When the influent COD/TAN was increased to 3.22, ammonia-oxidizing bacteria (AOB) activity could be maintained by increasing the air supply. Batch experiments revealed that the reactor achieved simultaneous ammonia nitrogen (NH4+-N) and COD removal, which indicated that AOB in the PN filler could compete better with heterotrophs to oxidize NH4+-N using dissolved oxygen compared with traditional activated sludge and biofilm methods. Nitrite accumulation rate remained above 95 % throughout the reactor's operation. High-throughput sequencing showed that AOB were always the dominant bacteria in the microbial community inside the filler, and the high tolerance of PN filler to organic matter depended on AOB abundance. This study provides technical support for achieving efficient and stable PN in COD-containing wastewater.
期刊介绍:
The Journal of Water Process Engineering aims to publish refereed, high-quality research papers with significant novelty and impact in all areas of the engineering of water and wastewater processing . Papers on advanced and novel treatment processes and technologies are particularly welcome. The Journal considers papers in areas such as nanotechnology and biotechnology applications in water, novel oxidation and separation processes, membrane processes (except those for desalination) , catalytic processes for the removal of water contaminants, sustainable processes, water reuse and recycling, water use and wastewater minimization, integrated/hybrid technology, process modeling of water treatment and novel treatment processes. Submissions on the subject of adsorbents, including standard measurements of adsorption kinetics and equilibrium will only be considered if there is a genuine case for novelty and contribution, for example highly novel, sustainable adsorbents and their use: papers on activated carbon-type materials derived from natural matter, or surfactant-modified clays and related minerals, would not fulfil this criterion. The Journal particularly welcomes contributions involving environmentally, economically and socially sustainable technology for water treatment, including those which are energy-efficient, with minimal or no chemical consumption, and capable of water recycling and reuse that minimizes the direct disposal of wastewater to the aquatic environment. Papers that describe novel ideas for solving issues related to water quality and availability are also welcome, as are those that show the transfer of techniques from other disciplines. The Journal will consider papers dealing with processes for various water matrices including drinking water (except desalination), domestic, urban and industrial wastewaters, in addition to their residues. It is expected that the journal will be of particular relevance to chemical and process engineers working in the field. The Journal welcomes Full Text papers, Short Communications, State-of-the-Art Reviews and Letters to Editors and Case Studies