Optimal Sensor Scheduling for Remote State Estimation Over Hidden Markovian Channels

IF 2 Q2 AUTOMATION & CONTROL SYSTEMS IEEE Control Systems Letters Pub Date : 2024-11-18 DOI:10.1109/LCSYS.2024.3501359
Bowen Sun;Xianghui Cao
{"title":"Optimal Sensor Scheduling for Remote State Estimation Over Hidden Markovian Channels","authors":"Bowen Sun;Xianghui Cao","doi":"10.1109/LCSYS.2024.3501359","DOIUrl":null,"url":null,"abstract":"This letter investigates the sensor scheduling problem in a multi-sensor, multi-channel remote state estimation system with time-varying channel states. Due to channel constraints, only a subset of sensors can transmit data to the remote state estimator at each time step. To prevent packet loss when transmitting when the channel state is busy, channel sensing is performed before transmission; however, sensing results are unreliable in practice. To address these challenges, we propose a channel state estimation algorithm using a Hidden Markov Model (HMM) to estimate the true channel state. We then formulate the sensor transmission scheduling problem as a Markov decision process (MDP) and prove the existence of a deterministic, stationary optimal policy. Additionally, we show that the optimal policy follows a monotone structure. Numerical examples are presented to illustrate the effectiveness of the proposed method.","PeriodicalId":37235,"journal":{"name":"IEEE Control Systems Letters","volume":"8 ","pages":"2541-2546"},"PeriodicalIF":2.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Control Systems Letters","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10756637/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

This letter investigates the sensor scheduling problem in a multi-sensor, multi-channel remote state estimation system with time-varying channel states. Due to channel constraints, only a subset of sensors can transmit data to the remote state estimator at each time step. To prevent packet loss when transmitting when the channel state is busy, channel sensing is performed before transmission; however, sensing results are unreliable in practice. To address these challenges, we propose a channel state estimation algorithm using a Hidden Markov Model (HMM) to estimate the true channel state. We then formulate the sensor transmission scheduling problem as a Markov decision process (MDP) and prove the existence of a deterministic, stationary optimal policy. Additionally, we show that the optimal policy follows a monotone structure. Numerical examples are presented to illustrate the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
隐马尔可夫信道上远程状态估计的最优传感器调度
本文研究了具有时变信道状态的多传感器、多通道远程状态估计系统中的传感器调度问题。由于信道的限制,每个时间步长只有一部分传感器可以向远程状态估计器传输数据。为了防止在信道状态为忙时传输时丢包,在传输前进行信道感知;然而,在实际应用中,传感结果并不可靠。为了解决这些问题,我们提出了一种使用隐马尔可夫模型(HMM)估计信道真实状态的信道状态估计算法。然后,我们将传感器传输调度问题表述为马尔可夫决策过程,并证明了一个确定性、平稳的最优策略的存在性。此外,我们还证明了最优策略遵循单调结构。数值算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Control Systems Letters
IEEE Control Systems Letters Mathematics-Control and Optimization
CiteScore
4.40
自引率
13.30%
发文量
471
期刊最新文献
Encoding High-Level Knowledge in Offline Multi-Agent Reinforcement Learning Using Reward Machines Formation Tracking for Nonlinear Systems via Prescribed-Time Noncooperative Game A Delay-Free Adaptive Stepsize for the Incremental Aggregated Gradient Method Safe Control Synthesis for Neural Network Control Systems via Constrained Zonotopes Ergodic Quasilinearization and Control for Brain Dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1