A Robust Multi-Modal Deep Learning-Based Fault Diagnosis Method for PV Systems

IF 3.3 Q3 ENERGY & FUELS IEEE Open Access Journal of Power and Energy Pub Date : 2024-11-13 DOI:10.1109/OAJPE.2024.3497880
Shahabodin Afrasiabi;Sarah Allahmoradi;Mousa Afrasiabi;Xiaodong Liang;C. Y. Chung;Jamshid Aghaei
{"title":"A Robust Multi-Modal Deep Learning-Based Fault Diagnosis Method for PV Systems","authors":"Shahabodin Afrasiabi;Sarah Allahmoradi;Mousa Afrasiabi;Xiaodong Liang;C. Y. Chung;Jamshid Aghaei","doi":"10.1109/OAJPE.2024.3497880","DOIUrl":null,"url":null,"abstract":"In this paper, a robust, multi-modal deep-learning-based fault identification method is proposed for solar photovoltaic (PV) systems, capable of detecting a wide range of faults at PV arrays, inverters, sensors, and grid connections. The proposed method combines residual convolutional neural networks (CNNs) and gated recurrent units (GRUs) to effectively extract both spatial and temporal features from raw PV data. To enhance the proposed model’s robustness and accuracy, a probabilistic loss function based on the entropy theory is formulated. The proposed method is validated using both experimental data obtained from a PV emulator-based test system and simulation data, achieving over 98% accuracy in fault identification under various noise conditions. The results indicate that the proposed model outperforms conventional CNN- and MSVM-based methods, demonstrating its potential in providing precise fault diagnostics in PV systems.","PeriodicalId":56187,"journal":{"name":"IEEE Open Access Journal of Power and Energy","volume":"11 ","pages":"583-594"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10752620","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Open Access Journal of Power and Energy","FirstCategoryId":"1085","ListUrlMain":"https://ieeexplore.ieee.org/document/10752620/","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, a robust, multi-modal deep-learning-based fault identification method is proposed for solar photovoltaic (PV) systems, capable of detecting a wide range of faults at PV arrays, inverters, sensors, and grid connections. The proposed method combines residual convolutional neural networks (CNNs) and gated recurrent units (GRUs) to effectively extract both spatial and temporal features from raw PV data. To enhance the proposed model’s robustness and accuracy, a probabilistic loss function based on the entropy theory is formulated. The proposed method is validated using both experimental data obtained from a PV emulator-based test system and simulation data, achieving over 98% accuracy in fault identification under various noise conditions. The results indicate that the proposed model outperforms conventional CNN- and MSVM-based methods, demonstrating its potential in providing precise fault diagnostics in PV systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.80
自引率
5.30%
发文量
45
审稿时长
10 weeks
期刊最新文献
A Robust Multi-Modal Deep Learning-Based Fault Diagnosis Method for PV Systems Online and Offline Identification of False Data Injection Attacks in Battery Sensors Using a Single Particle Model Model-Based Detection of Coordinated Attacks (DCA) in Distribution Systems A Novel Dual-Rotor Homopolar AC Machine Learning Power Systems Waveform Incipient Patterns Through Few-Shot Meta-Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1