Research progress on efficient battery thermal management system (BTMs) for electric vehicles using composite phase change materials with liquid cooling and nanoadditives

IF 3 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Journal of Thermal Analysis and Calorimetry Pub Date : 2024-11-19 DOI:10.1007/s10973-024-13752-x
Madhu Jhariya, Ashok Kumar Dewangan, Syed Quadir Moinuddin, Sunil Kumar, Aqueel Ahmad, Ashok Kumar Yadav
{"title":"Research progress on efficient battery thermal management system (BTMs) for electric vehicles using composite phase change materials with liquid cooling and nanoadditives","authors":"Madhu Jhariya,&nbsp;Ashok Kumar Dewangan,&nbsp;Syed Quadir Moinuddin,&nbsp;Sunil Kumar,&nbsp;Aqueel Ahmad,&nbsp;Ashok Kumar Yadav","doi":"10.1007/s10973-024-13752-x","DOIUrl":null,"url":null,"abstract":"<div><p>The increasing demand for electric vehicles (EVs) has brought new challenges in managing battery thermal conditions, particularly under high-power operations. This paper provides a comprehensive review of battery thermal management systems (BTMSs) for lithium-ion batteries, focusing on conventional and advanced cooling strategies. The primary objective of this study is to assess and compare the effectiveness of various cooling approaches, including air-based, liquid-based, phase change material (PCM)-based, and hybrid systems. This review paper reveals that while traditional air- and liquid-based systems offer certain benefits such as simplicity and cooling efficiency, they are constrained by limitations in thermal conductivity and energy consumption. In contrast, PCM-based systems, despite their poor thermal conductivity, provide stable temperature regulation without requiring additional energy input. To overcome these limitations, the integration of thermal conductivity enhancers (TCEs) like carbon fibers, expanded graphite, and metal foams into PCMs significantly improves their performance. For instance, composite PCM (CPCM) enhanced with expanded graphite shows a marked improvement in thermal conductivity, increasing from 0.2 Wm<sup>−1</sup> K<sup>−1</sup> to 16.6 Wm<sup>−1</sup> K<sup>−1</sup>, resulting in battery temperature reductions by up to 28%. Additionally, hybrid systems that combine active cooling with CPCMs, particularly when using nanoenhanced PCM with additives like graphene and metallic nanoparticles, demonstrate superior cooling efficiency, with temperature reductions of up to 50% compared to traditional systems. The uniqueness of this paper lies in its detailed comparison of the various BTMS strategies, including a thorough evaluation of hybrid systems that merge passive and active cooling techniques. We also explore the potential of nanoenhanced PCMs and hybrid CPCM systems, which offer significant advantages for high-power battery applications by providing both efficient heat dissipation and improved battery longevity. By synthesizing recent advancements in this field, this review highlights the most promising thermal management strategies, paving the way for future innovation in BTMS design for electric vehicles.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"13653 - 13680"},"PeriodicalIF":3.0000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13752-x","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The increasing demand for electric vehicles (EVs) has brought new challenges in managing battery thermal conditions, particularly under high-power operations. This paper provides a comprehensive review of battery thermal management systems (BTMSs) for lithium-ion batteries, focusing on conventional and advanced cooling strategies. The primary objective of this study is to assess and compare the effectiveness of various cooling approaches, including air-based, liquid-based, phase change material (PCM)-based, and hybrid systems. This review paper reveals that while traditional air- and liquid-based systems offer certain benefits such as simplicity and cooling efficiency, they are constrained by limitations in thermal conductivity and energy consumption. In contrast, PCM-based systems, despite their poor thermal conductivity, provide stable temperature regulation without requiring additional energy input. To overcome these limitations, the integration of thermal conductivity enhancers (TCEs) like carbon fibers, expanded graphite, and metal foams into PCMs significantly improves their performance. For instance, composite PCM (CPCM) enhanced with expanded graphite shows a marked improvement in thermal conductivity, increasing from 0.2 Wm−1 K−1 to 16.6 Wm−1 K−1, resulting in battery temperature reductions by up to 28%. Additionally, hybrid systems that combine active cooling with CPCMs, particularly when using nanoenhanced PCM with additives like graphene and metallic nanoparticles, demonstrate superior cooling efficiency, with temperature reductions of up to 50% compared to traditional systems. The uniqueness of this paper lies in its detailed comparison of the various BTMS strategies, including a thorough evaluation of hybrid systems that merge passive and active cooling techniques. We also explore the potential of nanoenhanced PCMs and hybrid CPCM systems, which offer significant advantages for high-power battery applications by providing both efficient heat dissipation and improved battery longevity. By synthesizing recent advancements in this field, this review highlights the most promising thermal management strategies, paving the way for future innovation in BTMS design for electric vehicles.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.50
自引率
9.10%
发文量
577
审稿时长
3.8 months
期刊介绍: Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews. The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.
期刊最新文献
Improvement of vibration resistance of slag blended cement mortar using C-S-H seeds Modeling heat generation in polymer–polymer interfaces under ultrasonic vibration: a coupled friction and viscoelastic approach Research progress on efficient battery thermal management system (BTMs) for electric vehicles using composite phase change materials with liquid cooling and nanoadditives Feasibility of waste-to-hydrogen generation system based on gasification/pyrolysis: a comprehensive review of experimental studies Sintering studies on Ni–Ti–Fe elemental powder mixtures using differential scanning calorimetry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1