Hong-Wei Li, Yi-Hao Fan, Shu-Ting Shen, Xiao-Jing Yan, Xi-Yun Li, Wei Zhong, Yu-Bo Sheng, Lan Zhou, Ming-Ming Du
{"title":"Maximal steered coherence in accelerating Unruh–DeWitt detectors","authors":"Hong-Wei Li, Yi-Hao Fan, Shu-Ting Shen, Xiao-Jing Yan, Xi-Yun Li, Wei Zhong, Yu-Bo Sheng, Lan Zhou, Ming-Ming Du","doi":"10.1140/epjc/s10052-024-13629-1","DOIUrl":null,"url":null,"abstract":"<div><p>Quantum coherence, a fundamental aspect of quantum mechanics, plays a crucial role in various quantum information tasks. However, preserving coherence under extreme conditions, such as relativistic acceleration, poses significant challenges. In this paper, we investigate the influence of Unruh temperature and energy levels on the evolution of maximal steered coherence (MSC) for different initial states. Our results reveal that MSC is strongly dependent on Unruh temperature, exhibiting behaviors ranging from monotonic decline to non-monotonic recovery, depending on the initial state parameter <span>\\(\\Delta _0\\)</span>. Notably, when <span>\\(\\Delta _0=1\\)</span>, MSC is generated as Unruh temperature increases. Additionally, we observe that higher energy levels help preserve or enhance MSC in the presence of Unruh effects. These findings offer valuable insights into the intricate relationship between relativistic effects and quantum coherence, with potential applications in developing robust quantum technologies for non-inertial environments.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13629-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13629-1","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum coherence, a fundamental aspect of quantum mechanics, plays a crucial role in various quantum information tasks. However, preserving coherence under extreme conditions, such as relativistic acceleration, poses significant challenges. In this paper, we investigate the influence of Unruh temperature and energy levels on the evolution of maximal steered coherence (MSC) for different initial states. Our results reveal that MSC is strongly dependent on Unruh temperature, exhibiting behaviors ranging from monotonic decline to non-monotonic recovery, depending on the initial state parameter \(\Delta _0\). Notably, when \(\Delta _0=1\), MSC is generated as Unruh temperature increases. Additionally, we observe that higher energy levels help preserve or enhance MSC in the presence of Unruh effects. These findings offer valuable insights into the intricate relationship between relativistic effects and quantum coherence, with potential applications in developing robust quantum technologies for non-inertial environments.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.