{"title":"Computation of an efficient pipelined fast Fourier transform architecture characterized with real-valued functions","authors":"Surya Prasad, Arunachalaperumal Chellaperumal","doi":"10.1007/s10825-024-02237-7","DOIUrl":null,"url":null,"abstract":"<div><p>The computational characteristics of the fast Fourier transform associated with real-time information signals using traditional techniques is deemed the maximal hardware void with peak power consumption, which is an essential task for any researchers while illustrating the designs of architectures in very large-scale integration circuits. The proposed scheme associated with the pipeline reduces the time of processing at the cost of several registers, and to ensure the efficient contribution for reducing the power, the modification over the complex and critical multiplier has been introduced with minimal internal real-time multipliers, which in turn is reconstructed by canonical signed digit multipliers with the adaptation over the technique of resource sharing. The verification of the results of experimentation has been made. It is inferred that the proposed incorporated design is highly efficient regarding area, speed, and power compared to state-of-the-art techniques.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02237-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The computational characteristics of the fast Fourier transform associated with real-time information signals using traditional techniques is deemed the maximal hardware void with peak power consumption, which is an essential task for any researchers while illustrating the designs of architectures in very large-scale integration circuits. The proposed scheme associated with the pipeline reduces the time of processing at the cost of several registers, and to ensure the efficient contribution for reducing the power, the modification over the complex and critical multiplier has been introduced with minimal internal real-time multipliers, which in turn is reconstructed by canonical signed digit multipliers with the adaptation over the technique of resource sharing. The verification of the results of experimentation has been made. It is inferred that the proposed incorporated design is highly efficient regarding area, speed, and power compared to state-of-the-art techniques.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.