Laser interaction with a MIM nanostructure including bowtie aperture and cylindrical holes for plasmonic field enhancement based on strong coupling of LSPR and SPPs
{"title":"Laser interaction with a MIM nanostructure including bowtie aperture and cylindrical holes for plasmonic field enhancement based on strong coupling of LSPR and SPPs","authors":"Mohsenifard Atefeh, Mohebbi Masoud","doi":"10.1007/s10825-024-02258-2","DOIUrl":null,"url":null,"abstract":"<div><p>In this paper, a metal–insulator–metal (MIM) array nanostructure consisting of a bowtie aperture and cylindrical holes is proposed as a field amplifier. This hybrid array consists of a grating film made of gold in which some cylindrical holes are replaced with a bowtie aperture, sapphire substrate, and finally a metal film. The array of cylindrical holes acting as a two-dimensional grating can effectively excite propagating surface plasmon polariton modes along a metal film, but the electric field enhancement inside it is relatively weak. On the other hand, the bowtie aperture, with its sharp corners and small gap, can provide a greater intensity enhancement factor within its gap. The combination of these two MIM nanostructures forms a strong coupling between the propagating and localized surface plasmons, leading to an improvement in field confinement in the bowtie aperture in the sub-diffraction limit and its magnitude increase of 115 times. This effective enhancement can be used in plasmonic sensors, lasers, SERS, etc., applications.</p></div>","PeriodicalId":620,"journal":{"name":"Journal of Computational Electronics","volume":"24 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10825-024-02258-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, a metal–insulator–metal (MIM) array nanostructure consisting of a bowtie aperture and cylindrical holes is proposed as a field amplifier. This hybrid array consists of a grating film made of gold in which some cylindrical holes are replaced with a bowtie aperture, sapphire substrate, and finally a metal film. The array of cylindrical holes acting as a two-dimensional grating can effectively excite propagating surface plasmon polariton modes along a metal film, but the electric field enhancement inside it is relatively weak. On the other hand, the bowtie aperture, with its sharp corners and small gap, can provide a greater intensity enhancement factor within its gap. The combination of these two MIM nanostructures forms a strong coupling between the propagating and localized surface plasmons, leading to an improvement in field confinement in the bowtie aperture in the sub-diffraction limit and its magnitude increase of 115 times. This effective enhancement can be used in plasmonic sensors, lasers, SERS, etc., applications.
期刊介绍:
he Journal of Computational Electronics brings together research on all aspects of modeling and simulation of modern electronics. This includes optical, electronic, mechanical, and quantum mechanical aspects, as well as research on the underlying mathematical algorithms and computational details. The related areas of energy conversion/storage and of molecular and biological systems, in which the thrust is on the charge transport, electronic, mechanical, and optical properties, are also covered.
In particular, we encourage manuscripts dealing with device simulation; with optical and optoelectronic systems and photonics; with energy storage (e.g. batteries, fuel cells) and harvesting (e.g. photovoltaic), with simulation of circuits, VLSI layout, logic and architecture (based on, for example, CMOS devices, quantum-cellular automata, QBITs, or single-electron transistors); with electromagnetic simulations (such as microwave electronics and components); or with molecular and biological systems. However, in all these cases, the submitted manuscripts should explicitly address the electronic properties of the relevant systems, materials, or devices and/or present novel contributions to the physical models, computational strategies, or numerical algorithms.