{"title":"Study on performance of scroll compressor for micro-refrigeration systems by CFD method","authors":"Shuo Song, Wenhao Shi, Yuanyang Zhao, Qichao Yang, Guangbin Liu, Yunxia Liu, Liansheng Li","doi":"10.1007/s10973-024-13689-1","DOIUrl":null,"url":null,"abstract":"<div><p>The micro-refrigeration system can be utilized in various fields, including personal cooling, medical applications, and other specialized fields. Compressors represent a crucial component of vapor compression refrigeration systems. A simulation model of the micro scroll compressor has been developed. The operating characteristics and leakage of scroll compressors with different capacities (10, 50, 100 cm<sup>3</sup>/rev) are compared. The effects of rotational speeds, condensing temperature, volume ratios, and clearance on the characteristics of micro scroll compressors have been analyzed. For the scroll compressor that has a suction capacity of 10 cm<sup>3</sup>/rev, the volumetric and isentropic efficiencies tend to initially rise and subsequently decrease as the rotational speed is raised. The volumetric efficiency reaches a maximum value of 86.26% at 5000 rpm, while the isentropic efficiency reaches a maximum value of 72.93% at 6000 rpm. As the volume ratio increases from 0.79 to 1.0 of the theoretical volume ratios, the volumetric efficiency remains stable, while The isentropic efficiency demonstrates a pattern of initially rising and then falling, reaching a peak of 71.63% at a volume ratio of 0.91 compared to the theoretical volume ratios.</p></div>","PeriodicalId":678,"journal":{"name":"Journal of Thermal Analysis and Calorimetry","volume":"149 23","pages":"14113 - 14127"},"PeriodicalIF":3.0000,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Thermal Analysis and Calorimetry","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10973-024-13689-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The micro-refrigeration system can be utilized in various fields, including personal cooling, medical applications, and other specialized fields. Compressors represent a crucial component of vapor compression refrigeration systems. A simulation model of the micro scroll compressor has been developed. The operating characteristics and leakage of scroll compressors with different capacities (10, 50, 100 cm3/rev) are compared. The effects of rotational speeds, condensing temperature, volume ratios, and clearance on the characteristics of micro scroll compressors have been analyzed. For the scroll compressor that has a suction capacity of 10 cm3/rev, the volumetric and isentropic efficiencies tend to initially rise and subsequently decrease as the rotational speed is raised. The volumetric efficiency reaches a maximum value of 86.26% at 5000 rpm, while the isentropic efficiency reaches a maximum value of 72.93% at 6000 rpm. As the volume ratio increases from 0.79 to 1.0 of the theoretical volume ratios, the volumetric efficiency remains stable, while The isentropic efficiency demonstrates a pattern of initially rising and then falling, reaching a peak of 71.63% at a volume ratio of 0.91 compared to the theoretical volume ratios.
期刊介绍:
Journal of Thermal Analysis and Calorimetry is a fully peer reviewed journal publishing high quality papers covering all aspects of thermal analysis, calorimetry, and experimental thermodynamics. The journal publishes regular and special issues in twelve issues every year. The following types of papers are published: Original Research Papers, Short Communications, Reviews, Modern Instruments, Events and Book reviews.
The subjects covered are: thermogravimetry, derivative thermogravimetry, differential thermal analysis, thermodilatometry, differential scanning calorimetry of all types, non-scanning calorimetry of all types, thermometry, evolved gas analysis, thermomechanical analysis, emanation thermal analysis, thermal conductivity, multiple techniques, and miscellaneous thermal methods (including the combination of the thermal method with various instrumental techniques), theory and instrumentation for thermal analysis and calorimetry.