Flat dispersion at large momentum transfer at the onset of exciton polariton formation

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-11-28 DOI:10.1038/s42005-024-01876-3
Hannah C. Nerl, Khairi Elyas, Zdravko Kochovski, Nahid Talebi, Christoph T. Koch, Katja Höflich
{"title":"Flat dispersion at large momentum transfer at the onset of exciton polariton formation","authors":"Hannah C. Nerl, Khairi Elyas, Zdravko Kochovski, Nahid Talebi, Christoph T. Koch, Katja Höflich","doi":"10.1038/s42005-024-01876-3","DOIUrl":null,"url":null,"abstract":"Excitons are quasiparticles, comprised of an electron excited from the valence band and attracted to the hole left behind, that govern transport properties in transition metal dichalcogenides. Excitonic coherence specifically needs to be understood to realise applications based on Bose-Einstein condensation and superfluidity. Here we used momentum-resolved electron energy-loss spectroscopy to obtain the complete energy-momentum dispersion of excitons in thin film and monolayer WSe2 across the entire Brillouin zone, including outside of the light cone and for a large energy-loss range (1.5–4 eV). The measured dispersion of the modes was found to be flat. This suggests that the excitations are at the onset of polaritonic mode formation, propagating in the confinement of nanometer thin and monolayer WSe2. In combination with helium ion microscopy nanopatterning it was possible to probe and control these excitonic modes in thin film WSe2 by modifying the local geometry through nanosized cuts. The coupling of an exciton to an electromagnetic field leads to the formation of an exciton polariton and in transition metal dichalcogenides specifically, they might be candidates for room temperature Bose-Einstein condensation. Here, the authors observe excitons at the onset of polaritonic mode formation in the confinement of nanometer thin and monolayer WSe2. Excitonic intensities were controlled locally by nanosized modifications to the material’s geometry.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-9"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01876-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01876-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Excitons are quasiparticles, comprised of an electron excited from the valence band and attracted to the hole left behind, that govern transport properties in transition metal dichalcogenides. Excitonic coherence specifically needs to be understood to realise applications based on Bose-Einstein condensation and superfluidity. Here we used momentum-resolved electron energy-loss spectroscopy to obtain the complete energy-momentum dispersion of excitons in thin film and monolayer WSe2 across the entire Brillouin zone, including outside of the light cone and for a large energy-loss range (1.5–4 eV). The measured dispersion of the modes was found to be flat. This suggests that the excitations are at the onset of polaritonic mode formation, propagating in the confinement of nanometer thin and monolayer WSe2. In combination with helium ion microscopy nanopatterning it was possible to probe and control these excitonic modes in thin film WSe2 by modifying the local geometry through nanosized cuts. The coupling of an exciton to an electromagnetic field leads to the formation of an exciton polariton and in transition metal dichalcogenides specifically, they might be candidates for room temperature Bose-Einstein condensation. Here, the authors observe excitons at the onset of polaritonic mode formation in the confinement of nanometer thin and monolayer WSe2. Excitonic intensities were controlled locally by nanosized modifications to the material’s geometry.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激子极化子形成开始时大动量转移的平坦色散
激子是一种准粒子,由一个被价带激发并被留下的空穴吸引的电子组成,它控制着过渡金属二硫化物的输运性质。为了实现基于玻色-爱因斯坦凝聚和超流动性的应用,激子相干性特别需要被理解。在这里,我们使用动量分辨的电子能量损失光谱获得了薄膜和单层WSe2中激子在整个布里渊区(包括光锥外)的完整能量-动量色散,并且能量损失范围很大(1.5-4 eV)。测量到的模色散是平坦的。这表明激发态发生在极化模式形成的开始,并在纳米薄层和单层WSe2的约束下传播。结合氦离子显微镜的纳米图谱,可以通过纳米尺寸的切割来改变局部几何形状,从而探测和控制薄膜WSe2中的激子模式。激子与电磁场的耦合导致激子极化子的形成,特别是在过渡金属二硫化物中,它们可能是室温玻色-爱因斯坦凝聚的候选者。在这里,作者观察到在纳米薄层和单层WSe2的约束下,激子在极化模式形成的开始。激子强度通过对材料几何形状进行纳米级的修改来局部控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1