In Silico Molecular Dynamics and 3D-QSAR Study on Thiazolidinedione Derivatives as Dual Inhibitors of DPP IV and PTP1B (DDPI's) for the Management of T2DM

IF 1.9 4区 化学 Q3 CHEMISTRY, MULTIDISCIPLINARY ChemistrySelect Pub Date : 2024-11-30 DOI:10.1002/slct.202400191
Yogesh Singh, Suresh Thareja
{"title":"In Silico Molecular Dynamics and 3D-QSAR Study on Thiazolidinedione Derivatives as Dual Inhibitors of DPP IV and PTP1B (DDPI's) for the Management of T2DM","authors":"Yogesh Singh,&nbsp;Suresh Thareja","doi":"10.1002/slct.202400191","DOIUrl":null,"url":null,"abstract":"<p>Simultaneous inhibition of dipeptidyl peptidase IV and protein tyrosine phosphatase 1B as DDPI's emerged as a therapeutic intervention for the management of T2DM. In the present study, we have employed molecular dynamics simulation in conjugation with the field-based 3D QSAR studies on a dataset having DDPI activities to identify the spatial fingerprints of target-specific thiazolidinedione analogs. Separate contours were generated for both DPP IV and PTP1B showing respective pharmacophoric structural requirements for optimal inhibitory activity. These developed 3D QSAR models also showed good statistical measures (DPP IV: <i>r</i><sup>2 </sup>= 0.9468; <i>q</i><sup>2 </sup>= 0.7173, and PTP1B: <i>r</i><sup>2 </sup>= 0.9718; <i>q</i><sup>2 </sup>= 0.819) with the excellent predictive ability with PLS-generated validation constraints. Comparative steric and electrostatic features were elucidated using respective contour maps for selective target-specific favorable activity. Furthermore, molecular docking was used for elucidating the mode of binding as DDPI's to DPP IV and PTP1B, along with MD simulation (200 ns) analysis such as RMSD, RMSF, R<sub>g</sub>, SASA, PCA, and FEL. These studies revealed that all the protein-ligand docked complexes elicited an overall better stability as compared to reference ligand (vildagliptin or ertiprotafib) complexes. Molecular docking studies revealed that compound <b>24</b> (DPP IV: −150.667 kcal/mol; PTP1B: −142.792 kcal/mol) showed maximum affinity toward both the proteins DPP IV and PTP1B, as compared to their respective standard inhibitor, i.e., vildagliptin −99.9843 kcal/mol and ertiprotafib −125.399 kcal/mol, respectively. A comparative study of these developed multitargeted QSAR models along with molecular docking and dynamics study were employed for the optimization of drug candidates as DDPI's. Compound <b>24</b> showed most stable behavior in the binding pockets of both the enzymes, as compared to their respective standard inhibitors. This study will be helpful in designing novel DDPIs with appropriately substitute thiazolidinedione for the management of T2DM. The designed compound YSR-14 exhibited the predicted <i>IC</i><sub>50</sub> values of 0.143 µM in DPP IV and 0.158 µM in PTP1B along with their excellent binding affinity against both targets.</p>","PeriodicalId":146,"journal":{"name":"ChemistrySelect","volume":"9 45","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemistrySelect","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/slct.202400191","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Simultaneous inhibition of dipeptidyl peptidase IV and protein tyrosine phosphatase 1B as DDPI's emerged as a therapeutic intervention for the management of T2DM. In the present study, we have employed molecular dynamics simulation in conjugation with the field-based 3D QSAR studies on a dataset having DDPI activities to identify the spatial fingerprints of target-specific thiazolidinedione analogs. Separate contours were generated for both DPP IV and PTP1B showing respective pharmacophoric structural requirements for optimal inhibitory activity. These developed 3D QSAR models also showed good statistical measures (DPP IV: r= 0.9468; q= 0.7173, and PTP1B: r= 0.9718; q= 0.819) with the excellent predictive ability with PLS-generated validation constraints. Comparative steric and electrostatic features were elucidated using respective contour maps for selective target-specific favorable activity. Furthermore, molecular docking was used for elucidating the mode of binding as DDPI's to DPP IV and PTP1B, along with MD simulation (200 ns) analysis such as RMSD, RMSF, Rg, SASA, PCA, and FEL. These studies revealed that all the protein-ligand docked complexes elicited an overall better stability as compared to reference ligand (vildagliptin or ertiprotafib) complexes. Molecular docking studies revealed that compound 24 (DPP IV: −150.667 kcal/mol; PTP1B: −142.792 kcal/mol) showed maximum affinity toward both the proteins DPP IV and PTP1B, as compared to their respective standard inhibitor, i.e., vildagliptin −99.9843 kcal/mol and ertiprotafib −125.399 kcal/mol, respectively. A comparative study of these developed multitargeted QSAR models along with molecular docking and dynamics study were employed for the optimization of drug candidates as DDPI's. Compound 24 showed most stable behavior in the binding pockets of both the enzymes, as compared to their respective standard inhibitors. This study will be helpful in designing novel DDPIs with appropriately substitute thiazolidinedione for the management of T2DM. The designed compound YSR-14 exhibited the predicted IC50 values of 0.143 µM in DPP IV and 0.158 µM in PTP1B along with their excellent binding affinity against both targets.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
ChemistrySelect
ChemistrySelect Chemistry-General Chemistry
CiteScore
3.30
自引率
4.80%
发文量
1809
审稿时长
1.6 months
期刊介绍: ChemistrySelect is the latest journal from ChemPubSoc Europe and Wiley-VCH. It offers researchers a quality society-owned journal in which to publish their work in all areas of chemistry. Manuscripts are evaluated by active researchers to ensure they add meaningfully to the scientific literature, and those accepted are processed quickly to ensure rapid online publication.
期刊最新文献
Cs2CO3-Catalyzed Multi-Component One-Pot Stepwise Route for the Synthesis of Polysubstituted 2-Pyridones Theoretical Investigations of Bioactive Substituted 2-Amino-3,5-dicarbonitrile-6-thiopyridine Derivatives Bioavailability and Pharmacological Properties of Shikonin- A Phytocompound from Lithospermum Erythrorhizon Impact of TiO2 Nanoparticles as Protective Sunscreen Cream on Earthworms via Histological and Electron Microscopic Studies In Silico Molecular Dynamics and 3D-QSAR Study on Thiazolidinedione Derivatives as Dual Inhibitors of DPP IV and PTP1B (DDPI's) for the Management of T2DM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1