Phonon-assisted Casimir interactions between piezoelectric materials

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-12-02 DOI:10.1038/s43246-024-00701-2
Dai-Nam Le, Pablo Rodriguez-Lopez, Lilia M. Woods
{"title":"Phonon-assisted Casimir interactions between piezoelectric materials","authors":"Dai-Nam Le, Pablo Rodriguez-Lopez, Lilia M. Woods","doi":"10.1038/s43246-024-00701-2","DOIUrl":null,"url":null,"abstract":"The strong coupling between electromagnetic fields and lattice oscillations in piezoelectric materials gives rise to phonon polariton excitations. Such quasiparticles are important in modulating the ubiquitous Casimir force. Here by utilizing the generalized Born-Huang hydrodynamics model exemplified in SiC, three types of phonons are studied: longitudinal optical phonon, transverse optical phonon and phonon polariton. The Fresnel reflection coefficients for the piezoelectric composed of semi-infinite substrates or thin films are then obtained by taking into account the phonon-electromagnetic coupling. The Casimir interaction, calculated via a generalized Lifshitz approach, is examined to highlight the interplay between different types of phonon modes and electromagnetic excitations. Our study shows that piezoelectrics emerge as materials where this ubiquitous force can be controlled via phonon properties. Different types of surface phonon polaritons associated with structural polytypes may also be distinguished through the Casimir interaction. Strong coupling between electromagnetic fields and lattice oscillations in piezoelectric materials gives rise to interesting phonon polariton excitations. Here, the role of these modes in modulating the Casimir force of piezoelectric plates is investigated theoretically, expanding the range of materials where the Casimir interaction can be detected and controlled.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-7"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00701-2.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00701-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The strong coupling between electromagnetic fields and lattice oscillations in piezoelectric materials gives rise to phonon polariton excitations. Such quasiparticles are important in modulating the ubiquitous Casimir force. Here by utilizing the generalized Born-Huang hydrodynamics model exemplified in SiC, three types of phonons are studied: longitudinal optical phonon, transverse optical phonon and phonon polariton. The Fresnel reflection coefficients for the piezoelectric composed of semi-infinite substrates or thin films are then obtained by taking into account the phonon-electromagnetic coupling. The Casimir interaction, calculated via a generalized Lifshitz approach, is examined to highlight the interplay between different types of phonon modes and electromagnetic excitations. Our study shows that piezoelectrics emerge as materials where this ubiquitous force can be controlled via phonon properties. Different types of surface phonon polaritons associated with structural polytypes may also be distinguished through the Casimir interaction. Strong coupling between electromagnetic fields and lattice oscillations in piezoelectric materials gives rise to interesting phonon polariton excitations. Here, the role of these modes in modulating the Casimir force of piezoelectric plates is investigated theoretically, expanding the range of materials where the Casimir interaction can be detected and controlled.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
压电材料间声子辅助卡西米尔相互作用
压电材料中电磁场与晶格振荡之间的强耦合引起声子极化激振。这种准粒子在调制无处不在的卡西米尔力方面很重要。本文利用以SiC为例的广义Born-Huang流体力学模型,研究了三种类型的声子:纵向光学声子、横向光学声子和声子极化子。考虑声子-电磁耦合,得到了由半无限基片或薄膜构成的压电体的菲涅耳反射系数。通过广义Lifshitz方法计算的卡西米尔相互作用,研究了不同类型声子模式和电磁激励之间的相互作用。我们的研究表明,压电材料可以通过声子特性来控制这种无处不在的力。与结构多型相关的不同类型的表面声子极化子也可以通过卡西米尔相互作用来区分。压电材料中电磁场与晶格振荡之间的强耦合引起了有趣的声子极化激振。本文从理论上研究了这些模态在调制压电板卡西米尔力中的作用,扩大了可以检测和控制卡西米尔相互作用的材料范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO2+x. Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids Grain boundary cracks patching and defect dual passivation with ammonium formate for high-efficiency triple-cation perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1