Spectroscopic ellipsometry utilizing frequency division multiplexed lasers

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-12-02 DOI:10.1038/s42005-024-01890-5
Jongkyoon Park, Yong Jai Cho, Won Chegal
{"title":"Spectroscopic ellipsometry utilizing frequency division multiplexed lasers","authors":"Jongkyoon Park, Yong Jai Cho, Won Chegal","doi":"10.1038/s42005-024-01890-5","DOIUrl":null,"url":null,"abstract":"Spectroscopic ellipsometry (SE), which measures the thickness of thin films in a non-contact way with an accuracy of angstroms, has been widely used for optical metrology. Several types of SE are available both commercially and in research, although they require specific implementations depending on the application. Here, we theoretically and experimentally demonstrate the Frequency Division Multiplexing Spectroscopic Ellipsometry (FDM-SE) technique. With respect to conventional rotating polarizing element ellipsometry, our variant uses discrete-wavelength intensity-modulated laser diodes. This modification enables the measurement of optical properties of materials at multiple wavelengths simultaneously. We further compare the performance of the FDM-SE to a commercial instrument by measuring the thickness of SiO2 films on a Si wafer, obtaining a difference between the measured thicknesses with both methods of less than 5 Å. The proposed FDM-SE technique therefore provides a more efficient alternative to conventional SE with a high accuracy for thickness measurements. Spectroscopic ellipsometry, capable of measuring the thickness of thin films with an accuracy of angstroms, has been widely used both in research and commercially. Here, the authors theoretically and experimentally demonstrate a unique variant of spectroscopic ellipsometry utilizing frequency division multiplexed lasers of different wavelengths.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01890-5.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01890-5","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Spectroscopic ellipsometry (SE), which measures the thickness of thin films in a non-contact way with an accuracy of angstroms, has been widely used for optical metrology. Several types of SE are available both commercially and in research, although they require specific implementations depending on the application. Here, we theoretically and experimentally demonstrate the Frequency Division Multiplexing Spectroscopic Ellipsometry (FDM-SE) technique. With respect to conventional rotating polarizing element ellipsometry, our variant uses discrete-wavelength intensity-modulated laser diodes. This modification enables the measurement of optical properties of materials at multiple wavelengths simultaneously. We further compare the performance of the FDM-SE to a commercial instrument by measuring the thickness of SiO2 films on a Si wafer, obtaining a difference between the measured thicknesses with both methods of less than 5 Å. The proposed FDM-SE technique therefore provides a more efficient alternative to conventional SE with a high accuracy for thickness measurements. Spectroscopic ellipsometry, capable of measuring the thickness of thin films with an accuracy of angstroms, has been widely used both in research and commercially. Here, the authors theoretically and experimentally demonstrate a unique variant of spectroscopic ellipsometry utilizing frequency division multiplexed lasers of different wavelengths.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Probing chiral-symmetric higher-order topological insulators with multipole winding number 30 years of the quantum cascade laser Spinor-dominated magnetoresistance in β-Ag2Se Spectroscopic ellipsometry utilizing frequency division multiplexed lasers Built-in Bernal gap in large-angle-twisted monolayer-bilayer graphene
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1