Mitigating errors in logical qubits

IF 5.4 1区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Communications Physics Pub Date : 2024-11-28 DOI:10.1038/s42005-024-01883-4
Samuel C. Smith, Benjamin J. Brown, Stephen D. Bartlett
{"title":"Mitigating errors in logical qubits","authors":"Samuel C. Smith, Benjamin J. Brown, Stephen D. Bartlett","doi":"10.1038/s42005-024-01883-4","DOIUrl":null,"url":null,"abstract":"Quantum error correcting codes can enable large quantum computations provided physical error rates are sufficiently low. We combine post-selection with surface code error correction through the use of exclusive decoders, which abort on decoding instances that are deemed too difficult. For the most discriminating of exclusive decoders, we demonstrate a threshold of 50% under depolarizing noise (or 32(1)% for the fault-tolerant case), and up to a quadratic improvement in logical failure rates below threshold. Furthermore, with a modest exclusion criterion, we identify a regime at low error rates where the exclusion rate decays with code distance, providing a pathway for scalable and time-efficient quantum computing with post-selection. Our exclusive decoder applied to magic state distillation yields a 75% reduction in the number of physical qubits, and a 60% reduction in the total spacetime volume, including accounting for repetitions. Other applications include error mitigation, and in concatenated schemes. Quantum error correction produces an enormous amount of data about the quantum system, including information about whether an uncorrectable error is likely. In this work the authors analyse a new decoder that can abort when decoding is deemed too difficult, yielding improved performance overall.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-10"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01883-4.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01883-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Quantum error correcting codes can enable large quantum computations provided physical error rates are sufficiently low. We combine post-selection with surface code error correction through the use of exclusive decoders, which abort on decoding instances that are deemed too difficult. For the most discriminating of exclusive decoders, we demonstrate a threshold of 50% under depolarizing noise (or 32(1)% for the fault-tolerant case), and up to a quadratic improvement in logical failure rates below threshold. Furthermore, with a modest exclusion criterion, we identify a regime at low error rates where the exclusion rate decays with code distance, providing a pathway for scalable and time-efficient quantum computing with post-selection. Our exclusive decoder applied to magic state distillation yields a 75% reduction in the number of physical qubits, and a 60% reduction in the total spacetime volume, including accounting for repetitions. Other applications include error mitigation, and in concatenated schemes. Quantum error correction produces an enormous amount of data about the quantum system, including information about whether an uncorrectable error is likely. In this work the authors analyse a new decoder that can abort when decoding is deemed too difficult, yielding improved performance overall.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
减少逻辑量子位的错误
如果物理错误率足够低,量子纠错码可以实现大量子计算。我们通过使用排他性解码器将后选择与表面代码纠错结合起来,该解码器在被认为太难的解码实例上中止。对于最具鉴别性的互斥解码器,我们证明了去极化噪声下的阈值为50%(或容错情况下的32(1)%),并且在阈值以下的逻辑故障率可达到二次改进。此外,通过适度的排除标准,我们确定了一个低错误率的制度,其中排除率随代码距离衰减,为具有后选择的可扩展和时间效率的量子计算提供了途径。我们的独家解码器应用于魔法状态蒸馏,使物理量子比特数量减少75%,总时空体积减少60%,包括重复计算在内。其他应用包括错误缓解和连接模式。量子纠错产生了关于量子系统的大量数据,包括关于是否可能出现不可纠正错误的信息。在这项工作中,作者分析了一种新的解码器,当解码被认为太难时可以中止,从而提高了整体性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications Physics
Communications Physics Physics and Astronomy-General Physics and Astronomy
CiteScore
8.40
自引率
3.60%
发文量
276
审稿时长
13 weeks
期刊介绍: Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline. The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.
期刊最新文献
Direct measurement of three different deformations near the ground state in an atomic nucleus. Elf autoencoder for unsupervised exploration of flat-band materials using electronic band structure fingerprints. Unraveling the role of gravity in shaping intruder dynamics within vibrated granular media One-third magnetization plateau in Quantum Kagome antiferromagnet Two-dimensional cooling without repump laser beams through ion motional heating
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1