A. M. Marques, D. Viedma, V. Ahufinger, R. G. Dias
{"title":"Impurity flat band states in the diamond chain","authors":"A. M. Marques, D. Viedma, V. Ahufinger, R. G. Dias","doi":"10.1038/s42005-024-01886-1","DOIUrl":null,"url":null,"abstract":"Flat band (FB) systems, featuring dispersionless energy bands, have garnered significant interest due to their compact localized states (CLSs). However, a detailed account on how local impurities affect the physical properties of overlapping CLSs is still missing. Here we study a diamond chain with a finite magnetic flux per plaquette that exhibits a gapped midspectrum FB with non-orthogonal CLSs, and develop a framework for projecting operators onto such non-orthogonal bases. This framework is applied to the case of an open diamond chain with small local impurities in the midchain plaquette, and analytical expressions are derived for FB states influenced by these impurities. For equal impurities in top and bottom sites under diagonal disorder, we show how the impurity states experience an averaged disorder dependent on their spatial extension, leading to enhanced robustness against disorder. For a single impurity, an exotic topological phase with a half-integer winding number is discovered, which is linked to a single in-gap edge state under open boundary conditions. Numerical simulations validate the analytical predictions. Flat bands states can be written, in general, as localized states that can couple by placing impurities at the overlapping regions, when present. The authors develop an analytic framework to derive impurity states in a diamond chain with magnetic flux and find an exotic behavior of these states characterized by a half-integer winding number.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-12"},"PeriodicalIF":5.4000,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01886-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01886-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Flat band (FB) systems, featuring dispersionless energy bands, have garnered significant interest due to their compact localized states (CLSs). However, a detailed account on how local impurities affect the physical properties of overlapping CLSs is still missing. Here we study a diamond chain with a finite magnetic flux per plaquette that exhibits a gapped midspectrum FB with non-orthogonal CLSs, and develop a framework for projecting operators onto such non-orthogonal bases. This framework is applied to the case of an open diamond chain with small local impurities in the midchain plaquette, and analytical expressions are derived for FB states influenced by these impurities. For equal impurities in top and bottom sites under diagonal disorder, we show how the impurity states experience an averaged disorder dependent on their spatial extension, leading to enhanced robustness against disorder. For a single impurity, an exotic topological phase with a half-integer winding number is discovered, which is linked to a single in-gap edge state under open boundary conditions. Numerical simulations validate the analytical predictions. Flat bands states can be written, in general, as localized states that can couple by placing impurities at the overlapping regions, when present. The authors develop an analytic framework to derive impurity states in a diamond chain with magnetic flux and find an exotic behavior of these states characterized by a half-integer winding number.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.