{"title":"Thrombin Nanochannel Logic Gate Inspired by BioMemory","authors":"Yonghuan Chen, Xinru Yue, Yongtao Tang, Qi Zhu, Weihua Yu, Mengfan Luo, Yu Huang, Liping Wen, Fengyu Li","doi":"10.1021/acs.analchem.4c02983","DOIUrl":null,"url":null,"abstract":"The process of “reading” and “writing” in biomemory involves the transmission of electrical signals between neurons, with ligand-gated ion channels assuming a key role. The solid-state nanochannels exhibit certain similarities with neurons. Information transmission can be achieved by controlling the flow of ions within nanochannels, rendering them potentially suitable for simulating neuron behavior. Herein, thrombin (Thr) was chosen as the target protein, and a functionalized nanochannel sensing system was successfully constructed using DNA aptamers, enabling a highly sensitive Thr response with a detection limit of 0.221 fM. Simultaneously, based on <i>Watson–Crick</i> base pairing and programmable chain displacement reactions, controlled release and cyclic response of the target molecule were further achieved. This mechanism elucidates the rules governing specific input-output relationships, innovatively linking them with memory storage and recognition through the Thr-nanochannel logic gate, thereby realizing the reading of biomemory at the hardware level. In summary, the biological hybrid nanofluidic control device of this invention converts molecular events into electrical signals, providing potential avenues for establishing connections between the mechanisms of biomemory and solid-state nanochannel biosensing and recognition in the future.","PeriodicalId":27,"journal":{"name":"Analytical Chemistry","volume":"79 1","pages":""},"PeriodicalIF":6.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.analchem.4c02983","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The process of “reading” and “writing” in biomemory involves the transmission of electrical signals between neurons, with ligand-gated ion channels assuming a key role. The solid-state nanochannels exhibit certain similarities with neurons. Information transmission can be achieved by controlling the flow of ions within nanochannels, rendering them potentially suitable for simulating neuron behavior. Herein, thrombin (Thr) was chosen as the target protein, and a functionalized nanochannel sensing system was successfully constructed using DNA aptamers, enabling a highly sensitive Thr response with a detection limit of 0.221 fM. Simultaneously, based on Watson–Crick base pairing and programmable chain displacement reactions, controlled release and cyclic response of the target molecule were further achieved. This mechanism elucidates the rules governing specific input-output relationships, innovatively linking them with memory storage and recognition through the Thr-nanochannel logic gate, thereby realizing the reading of biomemory at the hardware level. In summary, the biological hybrid nanofluidic control device of this invention converts molecular events into electrical signals, providing potential avenues for establishing connections between the mechanisms of biomemory and solid-state nanochannel biosensing and recognition in the future.
期刊介绍:
Analytical Chemistry, a peer-reviewed research journal, focuses on disseminating new and original knowledge across all branches of analytical chemistry. Fundamental articles may explore general principles of chemical measurement science and need not directly address existing or potential analytical methodology. They can be entirely theoretical or report experimental results. Contributions may cover various phases of analytical operations, including sampling, bioanalysis, electrochemistry, mass spectrometry, microscale and nanoscale systems, environmental analysis, separations, spectroscopy, chemical reactions and selectivity, instrumentation, imaging, surface analysis, and data processing. Papers discussing known analytical methods should present a significant, original application of the method, a notable improvement, or results on an important analyte.