Moiré Exciton Polaron Engineering via twisted hBN

IF 9.6 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2024-12-02 DOI:10.1021/acs.nanolett.4c04996
Minhyun Cho, Biswajit Datta, Kwanghee Han, Saroj B. Chand, Pratap Chandra Adak, Sichao Yu, Fengping Li, Kenji Watanabe, Takashi Taniguchi, James Hone, Jeil Jung, Gabriele Grosso, Young Duck Kim, Vinod M. Menon
{"title":"Moiré Exciton Polaron Engineering via twisted hBN","authors":"Minhyun Cho, Biswajit Datta, Kwanghee Han, Saroj B. Chand, Pratap Chandra Adak, Sichao Yu, Fengping Li, Kenji Watanabe, Takashi Taniguchi, James Hone, Jeil Jung, Gabriele Grosso, Young Duck Kim, Vinod M. Menon","doi":"10.1021/acs.nanolett.4c04996","DOIUrl":null,"url":null,"abstract":"Twisted hexagonal boron nitride (thBN) exhibits ferroelectricity due to moiré superlattices with AB/BA domains. These domains possess electric dipoles, leading to a periodic electrostatic potential that can be imprinted onto other materials placed in its proximity. Here we demonstrate the remote imprinting of moiré patterns from thBN onto monolayer MoSe<sub>2</sub> and investigate the changes in the exciton properties. We confirm the imprinted moiré patterns on monolayer MoSe<sub>2</sub> using Kelvin probe force microscopy (KPFM) and hyperspectral photoluminescence (PL) mapping. By creating a large ferroelectric domain (∼8.7 μm), we achieve unprecedented potential modulation (∼387 ± 52 meV). We observe the formation of exciton-polarons by the ferroelectric moiré domains and investigate the optical property changes induced by the moiré pattern in monolayer MoSe<sub>2</sub> by varying the moiré domain size down to ∼110 nm. Our findings highlight the potential of thBN as a platform for controlling the properties of 2D materials for optoelectronic and valleytronic applications.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"260 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.4c04996","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Twisted hexagonal boron nitride (thBN) exhibits ferroelectricity due to moiré superlattices with AB/BA domains. These domains possess electric dipoles, leading to a periodic electrostatic potential that can be imprinted onto other materials placed in its proximity. Here we demonstrate the remote imprinting of moiré patterns from thBN onto monolayer MoSe2 and investigate the changes in the exciton properties. We confirm the imprinted moiré patterns on monolayer MoSe2 using Kelvin probe force microscopy (KPFM) and hyperspectral photoluminescence (PL) mapping. By creating a large ferroelectric domain (∼8.7 μm), we achieve unprecedented potential modulation (∼387 ± 52 meV). We observe the formation of exciton-polarons by the ferroelectric moiré domains and investigate the optical property changes induced by the moiré pattern in monolayer MoSe2 by varying the moiré domain size down to ∼110 nm. Our findings highlight the potential of thBN as a platform for controlling the properties of 2D materials for optoelectronic and valleytronic applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Moiré Exciton Polaron Engineering via twisted hBN Impact of Polarization Field Architecture on Excitonic Properties of 2D Janus Homobilayers The Role of Glycocalyx Diversity and Thickness for Nanoparticle Internalization in M1-/M2-like Macrophages STING Nanoagonist Boosts Antitumor Immunity of Therapeutic DNA Vaccines Enhanced Antimicrobial Efficiency of Gold Nanoclusters via Improved Sonodynamic Activity and Out-Membrane Crossing Capacity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1