{"title":"Two-dimensional Cu-phenylalanine nanoflakes for efficient and robust CO2 electroreduction to C2+ products","authors":"Wenda Zhou, Mingyue Chen, Xingfang Luo, Cailei Yuan, Shoujie Liu, Wen Lei, Shouguo Wang","doi":"10.1039/d4cc05749j","DOIUrl":null,"url":null,"abstract":"The electrocatalytic reduction CO2 to multicarbon (C2+) products is of great importance but still faces challenges. The moderate oxidation state of Cu (Cuδ+) plays a critical role in promoting the C−C coupling, thereby enhancing the Faraday efficiency (FE) for C2+ products. However, Cuδ+ active species are unstable during the reaction. In this work, two-dimensional (2D) Cu-phenylalanine (Cu-phe) nanoflakes by assembling Cu ions and phenylalanine are prepared. X-ray absorption spectroscopy (XAS) is performed to confirm the moderate oxidation state and Cu-O/N coordination of Cu-phe nanoflakes. Owing to the carboxylic ligand and more stable Cu−N coordination, Cu-phe nanoflakes maintain a moderate oxidation state and exhibit high FE for C2+ products (88.1% at −0.8 V) in a flow cell, along with excellent stability. This work offers valuable insights for designing stable and efficient catalysts for the electro-conversion of CO2 into high-value chemical stocks.","PeriodicalId":67,"journal":{"name":"Chemical Communications","volume":"18 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cc05749j","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The electrocatalytic reduction CO2 to multicarbon (C2+) products is of great importance but still faces challenges. The moderate oxidation state of Cu (Cuδ+) plays a critical role in promoting the C−C coupling, thereby enhancing the Faraday efficiency (FE) for C2+ products. However, Cuδ+ active species are unstable during the reaction. In this work, two-dimensional (2D) Cu-phenylalanine (Cu-phe) nanoflakes by assembling Cu ions and phenylalanine are prepared. X-ray absorption spectroscopy (XAS) is performed to confirm the moderate oxidation state and Cu-O/N coordination of Cu-phe nanoflakes. Owing to the carboxylic ligand and more stable Cu−N coordination, Cu-phe nanoflakes maintain a moderate oxidation state and exhibit high FE for C2+ products (88.1% at −0.8 V) in a flow cell, along with excellent stability. This work offers valuable insights for designing stable and efficient catalysts for the electro-conversion of CO2 into high-value chemical stocks.
期刊介绍:
ChemComm (Chemical Communications) is renowned as the fastest publisher of articles providing information on new avenues of research, drawn from all the world''s major areas of chemical research.