Theoretical insights into the effect of metals co-substituted CeO2 (111) surface on oxygen vacancy formation and chemical looping CO2 assisted CH4 to synthesis gas

IF 2.9 3区 化学 Q3 CHEMISTRY, PHYSICAL Physical Chemistry Chemical Physics Pub Date : 2024-12-02 DOI:10.1039/d4cp03370a
Zeshan Wang, Yuelun Li, Yuxin Wang, Tao Li, Jiahao Zheng, LiNan Huang, Huicong Zuo, Dong Tian, Hua Wang, Kongzhai Li
{"title":"Theoretical insights into the effect of metals co-substituted CeO2 (111) surface on oxygen vacancy formation and chemical looping CO2 assisted CH4 to synthesis gas","authors":"Zeshan Wang, Yuelun Li, Yuxin Wang, Tao Li, Jiahao Zheng, LiNan Huang, Huicong Zuo, Dong Tian, Hua Wang, Kongzhai Li","doi":"10.1039/d4cp03370a","DOIUrl":null,"url":null,"abstract":"The density functional theory (DFT) method is used to investigate the effect of low oxygen vacancy formation energy on the catalytic performance of chemical looping dry reforming of methane (CL-DRM) when metal ions are co-substituted on CeO2 (111) surface. The results show that the oxygen vacancy formation energy is extremely low with an energy of -2.05 eV when Zn and Nd are co-substituted on the CeO2 (111) surface. For the CH4 conversion process in CL-DRM, the reaction paths are found to be CH4 → CH3 → CH2 → CH → C → CO paths on the pristine as well as on the Zn and Nd co-substituted surfaces. The critical rate-limiting step for both pristine and co-substituted surfaces is the dehydrogenation of CH2 to form CH and H with activation energies of 1.62 and 1.00 eV, respectively. This indicates that the surface co-substituted with Zn and Nd promotes the CH4 conversion process more effectively than the clean surface. However, the desorption process of syngas on the co-substituted surface requires high energy, and CO is easily peroxidized to CO2 before desorption, reducing the selectivity of CO to the detriment of syngas production. For the CO2 cleavage process in CL-DRM, CO2 is difficult to generate enough energy on the co-substituted surfaces to overcome the activation energy of the reaction. The formation of oxygen vacancies is facilitated by an extremely low oxygen vacancy formation energy, which in turn enhances the adsorption of reaction intermediates in the CL-DRM process onto the oxygen carrier. Nevertheless, an excessive accumulation of oxygen vacancies can drive the oxygen carrier into a hyperactivated condition, which may inhibit the desired reaction pathways and reduce the efficiency and selectivity of the CL-DRM process. The present study is of great importance for the design concept of oxygen carriers in CL-DRM and the application potential of oxygen vacancy regulation.","PeriodicalId":99,"journal":{"name":"Physical Chemistry Chemical Physics","volume":"76 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Chemistry Chemical Physics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d4cp03370a","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The density functional theory (DFT) method is used to investigate the effect of low oxygen vacancy formation energy on the catalytic performance of chemical looping dry reforming of methane (CL-DRM) when metal ions are co-substituted on CeO2 (111) surface. The results show that the oxygen vacancy formation energy is extremely low with an energy of -2.05 eV when Zn and Nd are co-substituted on the CeO2 (111) surface. For the CH4 conversion process in CL-DRM, the reaction paths are found to be CH4 → CH3 → CH2 → CH → C → CO paths on the pristine as well as on the Zn and Nd co-substituted surfaces. The critical rate-limiting step for both pristine and co-substituted surfaces is the dehydrogenation of CH2 to form CH and H with activation energies of 1.62 and 1.00 eV, respectively. This indicates that the surface co-substituted with Zn and Nd promotes the CH4 conversion process more effectively than the clean surface. However, the desorption process of syngas on the co-substituted surface requires high energy, and CO is easily peroxidized to CO2 before desorption, reducing the selectivity of CO to the detriment of syngas production. For the CO2 cleavage process in CL-DRM, CO2 is difficult to generate enough energy on the co-substituted surfaces to overcome the activation energy of the reaction. The formation of oxygen vacancies is facilitated by an extremely low oxygen vacancy formation energy, which in turn enhances the adsorption of reaction intermediates in the CL-DRM process onto the oxygen carrier. Nevertheless, an excessive accumulation of oxygen vacancies can drive the oxygen carrier into a hyperactivated condition, which may inhibit the desired reaction pathways and reduce the efficiency and selectivity of the CL-DRM process. The present study is of great importance for the design concept of oxygen carriers in CL-DRM and the application potential of oxygen vacancy regulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physical Chemistry Chemical Physics
Physical Chemistry Chemical Physics 化学-物理:原子、分子和化学物理
CiteScore
5.50
自引率
9.10%
发文量
2675
审稿时长
2.0 months
期刊介绍: Physical Chemistry Chemical Physics (PCCP) is an international journal co-owned by 19 physical chemistry and physics societies from around the world. This journal publishes original, cutting-edge research in physical chemistry, chemical physics and biophysical chemistry. To be suitable for publication in PCCP, articles must include significant innovation and/or insight into physical chemistry; this is the most important criterion that reviewers and Editors will judge against when evaluating submissions. The journal has a broad scope and welcomes contributions spanning experiment, theory, computation and data science. Topical coverage includes spectroscopy, dynamics, kinetics, statistical mechanics, thermodynamics, electrochemistry, catalysis, surface science, quantum mechanics, quantum computing and machine learning. Interdisciplinary research areas such as polymers and soft matter, materials, nanoscience, energy, surfaces/interfaces, and biophysical chemistry are welcomed if they demonstrate significant innovation and/or insight into physical chemistry. Joined experimental/theoretical studies are particularly appreciated when complementary and based on up-to-date approaches.
期刊最新文献
A holistic approach to understanding structural, magneto-electronic, thermoelectric, and thermodynamic properties of RhMnZ (Z = Si, Ge) half Heusler alloys Characterisation of the electronic ground states of BaH$^{+}$ and BaD$^{+}$ by high-resolution photoelectron spectroscopy Understanding asymmetric hydrogenation of alkenes catalyzed by first-row transition metal, Fe: a first-principles exploration Characterization of high Zr/Ce ratio Ba(Zr, Ce, Y)O3-δ proton conductors: investigating the impact of Y on materials properties Workflow for practical quantum chemical calculations with a quantum phase estimation algorithm: electronic ground and π–π* excited states of benzene and its derivatives
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1