Stress-eliminated liquid-phase fabrication of colloidal films above the critical crack thickness

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-12-02 DOI:10.1038/s41467-024-54412-w
Shiyuan Liu, Ying Hong, Wang Hong, Yi Zheng, Xiaodan Yang, Xuemu Li, Zhuomin Zhang, Xiaodong Yan, Yao Shan, Weikang Lin, Zehua Peng, Xingqi Zhang, Xi Yao, Zuankai Wang, Zhengbao Yang
{"title":"Stress-eliminated liquid-phase fabrication of colloidal films above the critical crack thickness","authors":"Shiyuan Liu, Ying Hong, Wang Hong, Yi Zheng, Xiaodan Yang, Xuemu Li, Zhuomin Zhang, Xiaodong Yan, Yao Shan, Weikang Lin, Zehua Peng, Xingqi Zhang, Xi Yao, Zuankai Wang, Zhengbao Yang","doi":"10.1038/s41467-024-54412-w","DOIUrl":null,"url":null,"abstract":"<p>The thickness of film materials is a critical factor influencing properties such as energy density, optical performance, and mechanical strength. However, the long-standing challenge of the intrinsic thermodynamic limit on maximum thickness often leads to detrimental cracking, compromising these desirable properties. In this study, we present an approach called the stress-eliminated liquid-phase fabrication (SELF) method. The SELF method eliminates the need for substrates to support the precursor solution used for film fabrication. We harness the intrinsic surface tension of the solution by confining it within specifically designed grids in a framework, forming suspended liquid bridges. This technique enables fabrication of crack-free ceramic films within a broad thickness range from 1 to 100 μm. Furthermore, the fabricated PZT films exhibit a high piezoelectric coefficient (<i>d</i><sub>33</sub>) of 229 pC N<sup>−1</sup>. The customizable grids not only offer design freedom for film topologies but also facilitate the fabrication of diverse film arrays without the need for destructive cutting processes. Moreover, the freestanding nature of these films enhances their adaptability for MEMS processing, and the “capillary bridge” topology allows the PZT films to be used in ultrasound focusing transmitter, providing possibilities in the medical imaging.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"8 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-54412-w","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The thickness of film materials is a critical factor influencing properties such as energy density, optical performance, and mechanical strength. However, the long-standing challenge of the intrinsic thermodynamic limit on maximum thickness often leads to detrimental cracking, compromising these desirable properties. In this study, we present an approach called the stress-eliminated liquid-phase fabrication (SELF) method. The SELF method eliminates the need for substrates to support the precursor solution used for film fabrication. We harness the intrinsic surface tension of the solution by confining it within specifically designed grids in a framework, forming suspended liquid bridges. This technique enables fabrication of crack-free ceramic films within a broad thickness range from 1 to 100 μm. Furthermore, the fabricated PZT films exhibit a high piezoelectric coefficient (d33) of 229 pC N−1. The customizable grids not only offer design freedom for film topologies but also facilitate the fabrication of diverse film arrays without the need for destructive cutting processes. Moreover, the freestanding nature of these films enhances their adaptability for MEMS processing, and the “capillary bridge” topology allows the PZT films to be used in ultrasound focusing transmitter, providing possibilities in the medical imaging.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
VLDLR mediates Semliki Forest virus neuroinvasion through the blood-cerebrospinal fluid barrier Modularity-based mathematical modeling of ligand inter-nanocluster connectivity for unraveling reversible stem cell regulation Chromosome architecture and low cohesion bias acrocentric chromosomes towards aneuploidy during mammalian meiosis Broadscale dampening of uncertainty adjustment in the aging brain An efficient multi-gram access in a two-step synthesis to soluble, nine-atomic, silylated silicon clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1