{"title":"Advancing wavefront sensing: meta Shack-Hartmann sensor enhances phase imaging","authors":"Xiaoyuan Liu, Zihan Geng, Mu Ku Chen","doi":"10.1038/s41377-024-01646-4","DOIUrl":null,"url":null,"abstract":"<p>A meta-lens array-based Shack-Hartmann wavefront sensor has been developed to break the limits imposed by the size and curvature of traditional micro-lenses, which significantly improves both sampling density and angular resolution of phase measurement. Metasurface advances the field of optical phase measurement to smaller-scale complex wavefront characterization.</p>","PeriodicalId":18069,"journal":{"name":"Light-Science & Applications","volume":"7 1","pages":""},"PeriodicalIF":20.6000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light-Science & Applications","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1038/s41377-024-01646-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
A meta-lens array-based Shack-Hartmann wavefront sensor has been developed to break the limits imposed by the size and curvature of traditional micro-lenses, which significantly improves both sampling density and angular resolution of phase measurement. Metasurface advances the field of optical phase measurement to smaller-scale complex wavefront characterization.