Archetypal crop trait dynamics for enhanced retrieval of biophysical parameters from Sentinel-2 MSI

IF 11.1 1区 地球科学 Q1 ENVIRONMENTAL SCIENCES Remote Sensing of Environment Pub Date : 2024-12-02 DOI:10.1016/j.rse.2024.114510
Feng Yin , Philip E. Lewis , Jose L. Gómez-Dans , Thomas Weiß
{"title":"Archetypal crop trait dynamics for enhanced retrieval of biophysical parameters from Sentinel-2 MSI","authors":"Feng Yin ,&nbsp;Philip E. Lewis ,&nbsp;Jose L. Gómez-Dans ,&nbsp;Thomas Weiß","doi":"10.1016/j.rse.2024.114510","DOIUrl":null,"url":null,"abstract":"<div><div>We present a new method for estimating biophysical parameters from Earth Observation (EO) data using a crop-specific empirical model based on the PROSAIL Radiative Transfer (RT) model, called an ‘archetype’ model. The first-order model presented uses maximum biophysical parameter magnitude, phenological and soil parameters to describe the spectral reflectance (400–2500 nm) of vegetation over time. The approach assumes smooth variation and archetypical coordination of crop biophysical parameters over time for a given crop. The form of coordination is learned from a large sample of observations. Using Sentinel-2 observations of maize from Northeast China in 2019, we map reflectance to biophysical parameters using an inverse model operator, synchronise the parameters to a consistent time frame using a double logistic model of <span><math><mrow><mi>L</mi><mi>A</mi><mi>I</mi></mrow></math></span>, then derive the model archetypes as the median value of the synchronised samples. We apply the model to estimate time series of biophysical parameters for different cereal crops using an ensemble framework with a weighted K-nearest neighbour solution, and validate the results with ground measurements of different crops collected near Munich, Germany in 2017 and 2018. The results show <span><math><mi>R</mi></math></span> values greater than 0.8 for leaf area index (<span><math><mrow><mi>L</mi><mi>A</mi><mi>I</mi></mrow></math></span>) and leaf brown pigment content (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>r</mi><mi>o</mi><mi>w</mi><mi>n</mi></mrow></msub></math></span>), with an RMSE of 0.94 <span><math><mrow><msup><mrow><mtext>m</mtext></mrow><mrow><mn>2</mn></mrow></msup><mo>/</mo><msup><mrow><mtext>m</mtext></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> for <span><math><mrow><mi>L</mi><mi>A</mi><mi>I</mi></mrow></math></span> and 0.15 for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>b</mi><mi>r</mi><mi>o</mi><mi>w</mi><mi>n</mi></mrow></msub></math></span>. The chlorophyll content (<span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span>) and canopy water content (<span><math><mrow><mi>C</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>w</mi></mrow></msub></mrow></math></span>) were retrieved at a higher level of accuracy, with <span><math><mi>R</mi></math></span> values around 0.9 and an RMSE of <span><math><mrow><mn>6</mn><mo>.</mo><mn>59</mn><mi>μ</mi><msup><mrow><mtext>g/cm</mtext></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span> for <span><math><msub><mrow><mi>C</mi></mrow><mrow><mi>a</mi><mi>b</mi></mrow></msub></math></span> and 0.03 <span><math><msup><mrow><mtext>g/cm</mtext></mrow><mrow><mn>2</mn></mrow></msup></math></span> for <span><math><mrow><mi>C</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>w</mi></mrow></msub></mrow></math></span>. Comparison of forward-modelled hyperspectral reflectance with independent ground measures shows that the retrieved parameters account for 90% of the variation in canopy reflectance, with an overall RMSE of around 0.05 in reflectance units. The retrievals for all terms are mostly within <span><math><mrow><mn>1</mn><mi>σ</mi></mrow></math></span> when measurement and prediction uncertainty are taken into account, except for some early and late season issues in leaf and canopy water due to the complexity of canopy structure and understory during these periods. The approach provides a new form of constraint for the simultaneous estimation of biophysical parameters from EO and greatly reduces the rank of the problem. It is suitable for monitoring crop conditions where biophysical parameters vary smoothly over time consistently with each archetype form. The approach can be refined for other canopy types and canopy representations and could provide strong constraints on expected smoothly-varying canopy features to aid in the interpretation of EO signals across different regions of the electromagnetic spectrum.</div></div>","PeriodicalId":417,"journal":{"name":"Remote Sensing of Environment","volume":"318 ","pages":"Article 114510"},"PeriodicalIF":11.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Remote Sensing of Environment","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0034425724005364","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

We present a new method for estimating biophysical parameters from Earth Observation (EO) data using a crop-specific empirical model based on the PROSAIL Radiative Transfer (RT) model, called an ‘archetype’ model. The first-order model presented uses maximum biophysical parameter magnitude, phenological and soil parameters to describe the spectral reflectance (400–2500 nm) of vegetation over time. The approach assumes smooth variation and archetypical coordination of crop biophysical parameters over time for a given crop. The form of coordination is learned from a large sample of observations. Using Sentinel-2 observations of maize from Northeast China in 2019, we map reflectance to biophysical parameters using an inverse model operator, synchronise the parameters to a consistent time frame using a double logistic model of LAI, then derive the model archetypes as the median value of the synchronised samples. We apply the model to estimate time series of biophysical parameters for different cereal crops using an ensemble framework with a weighted K-nearest neighbour solution, and validate the results with ground measurements of different crops collected near Munich, Germany in 2017 and 2018. The results show R values greater than 0.8 for leaf area index (LAI) and leaf brown pigment content (Cbrown), with an RMSE of 0.94 m2/m2 for LAI and 0.15 for Cbrown. The chlorophyll content (Cab) and canopy water content (CCw) were retrieved at a higher level of accuracy, with R values around 0.9 and an RMSE of 6.59μg/cm2 for Cab and 0.03 g/cm2 for CCw. Comparison of forward-modelled hyperspectral reflectance with independent ground measures shows that the retrieved parameters account for 90% of the variation in canopy reflectance, with an overall RMSE of around 0.05 in reflectance units. The retrievals for all terms are mostly within 1σ when measurement and prediction uncertainty are taken into account, except for some early and late season issues in leaf and canopy water due to the complexity of canopy structure and understory during these periods. The approach provides a new form of constraint for the simultaneous estimation of biophysical parameters from EO and greatly reduces the rank of the problem. It is suitable for monitoring crop conditions where biophysical parameters vary smoothly over time consistently with each archetype form. The approach can be refined for other canopy types and canopy representations and could provide strong constraints on expected smoothly-varying canopy features to aid in the interpretation of EO signals across different regions of the electromagnetic spectrum.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从Sentinel-2 MSI中增强生物物理参数检索的作物原型性状动态
本文提出了一种基于PROSAIL辐射传输(RT)模型的作物特异性经验模型,即“原型”模型,从地球观测(EO)数据中估计生物物理参数的新方法。提出的一阶模型使用最大生物物理参数、物候和土壤参数来描述植被随时间的光谱反射率(400-2500 nm)。该方法假定作物生物物理参数随时间的平滑变化和典型协调。协调的形式是从大量的观察样本中习得的。利用2019年中国东北地区的Sentinel-2玉米观测数据,利用逆模型算子将反射率映射到生物物理参数,利用LAILAI的双逻辑模型将参数同步到一致的时间框架,然后推导模型原型作为同步样本的中位数。我们将该模型应用于使用加权k近邻解决方案的集成框架来估计不同谷类作物的生物物理参数时间序列,并使用2017年和2018年在德国慕尼黑附近收集的不同作物的地面测量数据验证结果。结果表明,叶面积指数(LAILAI)和叶棕色色素含量(cbrownbrown)的RR值均大于0.8,其中LAILAI的RMSE为0.94 m2/m2m2/m2, cbrownbrown的RMSE为0.15。叶绿素含量(CabCab)和冠层含水量(CCwCCw)的反演精度较高,RR值在0.9左右,RMSE为6.59μg/ cmm2, CabCab为26.59μg/cm2, CCwCCw为0.03 g/cm2。正演模拟高光谱反射率与独立地面测量数据的对比表明,反演参数占冠层反射率变化的90%,反射率单位的总体RMSE约为0.05。在考虑测量和预测不确定性的情况下,除由于冠层结构和林下植被的复杂性,叶片和冠层水分在季前和季后存在一定的变化外,其余各项的反演结果均在1σ1σ范围内。该方法为同时估计生物物理参数提供了一种新的约束形式,大大降低了问题的阶数。它适用于监测作物条件,其中生物物理参数随时间平稳变化,与每个原型形式一致。该方法可以针对其他冠层类型和冠层表示进行改进,并且可以对预期的平滑变化的冠层特征提供强有力的约束,以帮助解释电磁波谱不同区域的EO信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Remote Sensing of Environment
Remote Sensing of Environment 环境科学-成像科学与照相技术
CiteScore
25.10
自引率
8.90%
发文量
455
审稿时长
53 days
期刊介绍: Remote Sensing of Environment (RSE) serves the Earth observation community by disseminating results on the theory, science, applications, and technology that contribute to advancing the field of remote sensing. With a thoroughly interdisciplinary approach, RSE encompasses terrestrial, oceanic, and atmospheric sensing. The journal emphasizes biophysical and quantitative approaches to remote sensing at local to global scales, covering a diverse range of applications and techniques. RSE serves as a vital platform for the exchange of knowledge and advancements in the dynamic field of remote sensing.
期刊最新文献
Comparison of correction methods for bidirectional effects in ocean colour remote sensing Editorial Board Spatial-temporal evolution of landslides spanning the impoundment of Baihetan mega hydropower project revealed by satellite radar interferometry Methodology comparison for correcting woody component effects in leaf area index calculations from digital cover images in broadleaf forests A practical SIF-based crop model for predicting crop yields by quantifying the fraction of open PSII reaction centers (qL)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1