Structure failure and strength evaluation of honeycomb-based sandwich composites under variable hydro-thermal-mechanical load

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES Composite Structures Pub Date : 2024-11-30 DOI:10.1016/j.compstruct.2024.118763
Y.J. Cui , Q. Zhou , Z.H. Xu , B.L. Wang , X.Q. Fang , K.F. Wang , B. Wang
{"title":"Structure failure and strength evaluation of honeycomb-based sandwich composites under variable hydro-thermal-mechanical load","authors":"Y.J. Cui ,&nbsp;Q. Zhou ,&nbsp;Z.H. Xu ,&nbsp;B.L. Wang ,&nbsp;X.Q. Fang ,&nbsp;K.F. Wang ,&nbsp;B. Wang","doi":"10.1016/j.compstruct.2024.118763","DOIUrl":null,"url":null,"abstract":"<div><div>The high-strength and lightweight sandwich structures have broad application prospect in aerospace, wind turbine generator, traffic and civil engineering. The sandwich structures usually service with severe environment and complicated mechanical load, structure failure and strength prediction are crucial issues. Under time-varying and optional position hydro-thermal–mechanical loading, this paper systematically analyzes strength failure, buckling and delamination of a sandwich beam with carbon fiber-reinforced polymer face sheet and aluminum honeycomb core. Effects of elastic boundary conditions, hydrothermal stress, configuration of honeycomb cell and thickness of face sheet on failure pattern and critical failure loading are evaluated. The theoretical deformation model is verified by performing a bending experiment of cantilever beam. For the honeycomb core with small re-entrant angle and shot horizontal cell wall, the sandwich cantilever beam occurs strength failure of face sheet and delamination is happened in simply supported beam. With increase of re-entrant angle and cell wall length, buckling of horizontal cell wall becomes the primary failure pattern of sandwich beam. With thickness increase of face sheet, the failure pattern switches from face sheet’s strength failure to delamination. The critical load for delamination decreases to a volley value and then increases with thickness of face sheet.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"354 ","pages":"Article 118763"},"PeriodicalIF":6.3000,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324008912","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

The high-strength and lightweight sandwich structures have broad application prospect in aerospace, wind turbine generator, traffic and civil engineering. The sandwich structures usually service with severe environment and complicated mechanical load, structure failure and strength prediction are crucial issues. Under time-varying and optional position hydro-thermal–mechanical loading, this paper systematically analyzes strength failure, buckling and delamination of a sandwich beam with carbon fiber-reinforced polymer face sheet and aluminum honeycomb core. Effects of elastic boundary conditions, hydrothermal stress, configuration of honeycomb cell and thickness of face sheet on failure pattern and critical failure loading are evaluated. The theoretical deformation model is verified by performing a bending experiment of cantilever beam. For the honeycomb core with small re-entrant angle and shot horizontal cell wall, the sandwich cantilever beam occurs strength failure of face sheet and delamination is happened in simply supported beam. With increase of re-entrant angle and cell wall length, buckling of horizontal cell wall becomes the primary failure pattern of sandwich beam. With thickness increase of face sheet, the failure pattern switches from face sheet’s strength failure to delamination. The critical load for delamination decreases to a volley value and then increases with thickness of face sheet.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
期刊最新文献
Structure failure and strength evaluation of honeycomb-based sandwich composites under variable hydro-thermal-mechanical load Exploring deformability in 3D tufted composite reinforcements: Understanding bending behaviors in forming applications A comparative study on drilling characteristics of unidirectional thermosetting CF/epoxy and thermoplastic CF/PEEK composites Ultrasonic detection and evaluation of delamination defects in carbon fiber composites based on finite element simulation Lamb wave S0/A0 mode conversion for imaging the internal structure of composite panel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1