Haibin Liu , Chenghao Wu , Ruishan Xie , Rui Pan , Xiaoguang Chen , Jhe-yu Lin , Shujun Chen
{"title":"Interface optimization design and bonding mechanism of friction rolling additive manufactured aluminum/steel dissimilar metal","authors":"Haibin Liu , Chenghao Wu , Ruishan Xie , Rui Pan , Xiaoguang Chen , Jhe-yu Lin , Shujun Chen","doi":"10.1016/j.jmapro.2024.11.040","DOIUrl":null,"url":null,"abstract":"<div><div>The aluminum/steel dissimilar structure is a cornerstone for lightweight components and equipment. Yet, traditional fusion welding methods' high heat input frequently gives rise to detrimental defects such as porosity, cracks, and excessively thick intermetallic compound layers (IMCLs) at the interface. To overcome these challenges, this paper innovatively combines low heat input solid-state friction rolling additive manufacturing (FRAM) and strategic interface design to achieve reliable bonding between these dissimilar metals. Our investigation found that conventional FRAM (C-FRAM), hindered by inadequate heat input, struggled to facilitate continuous atomic migration, leading to incomplete joint formation. However, the introduction of arc-assisted FRAM (Aa-FRAM) significantly increased aluminum/steel mixing, fostering interdiffusion of interface atoms under high temperature and pressure conditions. This resulted in the formation of uniform 2.3 μm IMCLs composed of Fe<sub>7</sub>Al<sub>11</sub>, Fe<sub>4</sub>Al<sub>13</sub>, and FeAl<sub>6</sub>, and the nanoscale amorphous layer was found between IMCLs and steel. The metallurgical bonding was successfully established at the Aa-FRAM interface. Moreover, by using arc/micro-hole assisted FRAM (AHa-FRAM), which machined an array of micro-holes on the steel surface, we further optimized the aluminum-steel interface bonding quality. The plasticized aluminum alloy (Al alloy) seamlessly flowed into these micro-holes, creating a robust “self-riveting” structure that bolstered mechanical interlocking at the interface. Consequently, we achieved a high-strength joint with an exceptional ultimate tensile strength (UTS) of 167.2 MPa. In addition, the crystallographic analysis showed that the grain size was significantly refined by using the two auxiliary methods, which played a fine grain strengthening role on the interface. This paper innovatively improves the interface bonding between Al alloy and steel through the combination of solid-state FRAM and interface design, thereby opening up a new pathway for the manufacture of aluminum-steel dissimilar structural components.</div></div>","PeriodicalId":16148,"journal":{"name":"Journal of Manufacturing Processes","volume":"132 ","pages":"Pages 1041-1052"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Manufacturing Processes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1526612524011976","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
The aluminum/steel dissimilar structure is a cornerstone for lightweight components and equipment. Yet, traditional fusion welding methods' high heat input frequently gives rise to detrimental defects such as porosity, cracks, and excessively thick intermetallic compound layers (IMCLs) at the interface. To overcome these challenges, this paper innovatively combines low heat input solid-state friction rolling additive manufacturing (FRAM) and strategic interface design to achieve reliable bonding between these dissimilar metals. Our investigation found that conventional FRAM (C-FRAM), hindered by inadequate heat input, struggled to facilitate continuous atomic migration, leading to incomplete joint formation. However, the introduction of arc-assisted FRAM (Aa-FRAM) significantly increased aluminum/steel mixing, fostering interdiffusion of interface atoms under high temperature and pressure conditions. This resulted in the formation of uniform 2.3 μm IMCLs composed of Fe7Al11, Fe4Al13, and FeAl6, and the nanoscale amorphous layer was found between IMCLs and steel. The metallurgical bonding was successfully established at the Aa-FRAM interface. Moreover, by using arc/micro-hole assisted FRAM (AHa-FRAM), which machined an array of micro-holes on the steel surface, we further optimized the aluminum-steel interface bonding quality. The plasticized aluminum alloy (Al alloy) seamlessly flowed into these micro-holes, creating a robust “self-riveting” structure that bolstered mechanical interlocking at the interface. Consequently, we achieved a high-strength joint with an exceptional ultimate tensile strength (UTS) of 167.2 MPa. In addition, the crystallographic analysis showed that the grain size was significantly refined by using the two auxiliary methods, which played a fine grain strengthening role on the interface. This paper innovatively improves the interface bonding between Al alloy and steel through the combination of solid-state FRAM and interface design, thereby opening up a new pathway for the manufacture of aluminum-steel dissimilar structural components.
期刊介绍:
The aim of the Journal of Manufacturing Processes (JMP) is to exchange current and future directions of manufacturing processes research, development and implementation, and to publish archival scholarly literature with a view to advancing state-of-the-art manufacturing processes and encouraging innovation for developing new and efficient processes. The journal will also publish from other research communities for rapid communication of innovative new concepts. Special-topic issues on emerging technologies and invited papers will also be published.