Decomposing the total uncertainty in wheat modeling: an analysis of model structure, parameters, weather data inputs, and squared bias contributions

IF 6.1 1区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY Agricultural Systems Pub Date : 2024-12-02 DOI:10.1016/j.agsy.2024.104215
Jinhui Zheng , Shuai Zhang
{"title":"Decomposing the total uncertainty in wheat modeling: an analysis of model structure, parameters, weather data inputs, and squared bias contributions","authors":"Jinhui Zheng ,&nbsp;Shuai Zhang","doi":"10.1016/j.agsy.2024.104215","DOIUrl":null,"url":null,"abstract":"<div><h3>CONTEXT</h3><div>The comparison of agricultural models and the conduct of crop improvement research have garnered significant attention in recent times. One of the primary objectives in this field is to pinpoint and mitigate the uncertainties inherent in modeling the effects of climate on crop growth and productivity. Enhancing the precision and reliability of crop models has emerged as a critical concern.</div></div><div><h3>OBJECTIVE</h3><div>In this study, we calibrate and validate four wheat phenology models using wheat phenology data from 1990 to 2009. More importantly, we explain three significant sources of uncertainty in wheat phenology models, namely model structure, model parameters, and weather data inputs.</div></div><div><h3>METHODS</h3><div>This study examines four wheat models—the GLAM-Wheat model, APSIM-Wheat model, SPASS-Wheat model, and WOFOST model—to simulate phenological changes across 32 agricultural meteorological stations in the North China Plain. Additionally, the three main sources of uncertainty in the model are quantified using the Markov Chain Monte Carlo (MCMC) method.</div></div><div><h3>RESULTS AND CONCLUSIONS</h3><div>The results indicate that all four wheat phenological models effectively simulate the growth of wheat in the study area, with an average RMSE ranging from 4.4 to 5.2 days for the heading stage and from 4.7 to 5.6 days for the maturity stage. The uncertainty analysis encompasses parameters, squared bias, weather data inputs, and model structure. During the heading stage, the overall contributions of these uncertainties are 8.9 %, 40.8 %, 47.4 %, and 2.9 %, respectively. During the maturity stage, these contributions are 11.2 %, 51.2 %, 35.0 %, and 2.6 %, respectively. Weather data inputs are identified as the primary sources of uncertainty.</div></div><div><h3>SIGNIFICANCE</h3><div>This study quantifies the uncertainty within wheat phenology models, a critical step towards enhancing the precision and dependability of crop models. Such efforts hold substantial importance in shaping agricultural policies and refining management practices, ultimately aiding in tackling the challenges posed by impending climate change.</div></div>","PeriodicalId":7730,"journal":{"name":"Agricultural Systems","volume":"224 ","pages":"Article 104215"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agricultural Systems","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0308521X24003652","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

CONTEXT

The comparison of agricultural models and the conduct of crop improvement research have garnered significant attention in recent times. One of the primary objectives in this field is to pinpoint and mitigate the uncertainties inherent in modeling the effects of climate on crop growth and productivity. Enhancing the precision and reliability of crop models has emerged as a critical concern.

OBJECTIVE

In this study, we calibrate and validate four wheat phenology models using wheat phenology data from 1990 to 2009. More importantly, we explain three significant sources of uncertainty in wheat phenology models, namely model structure, model parameters, and weather data inputs.

METHODS

This study examines four wheat models—the GLAM-Wheat model, APSIM-Wheat model, SPASS-Wheat model, and WOFOST model—to simulate phenological changes across 32 agricultural meteorological stations in the North China Plain. Additionally, the three main sources of uncertainty in the model are quantified using the Markov Chain Monte Carlo (MCMC) method.

RESULTS AND CONCLUSIONS

The results indicate that all four wheat phenological models effectively simulate the growth of wheat in the study area, with an average RMSE ranging from 4.4 to 5.2 days for the heading stage and from 4.7 to 5.6 days for the maturity stage. The uncertainty analysis encompasses parameters, squared bias, weather data inputs, and model structure. During the heading stage, the overall contributions of these uncertainties are 8.9 %, 40.8 %, 47.4 %, and 2.9 %, respectively. During the maturity stage, these contributions are 11.2 %, 51.2 %, 35.0 %, and 2.6 %, respectively. Weather data inputs are identified as the primary sources of uncertainty.

SIGNIFICANCE

This study quantifies the uncertainty within wheat phenology models, a critical step towards enhancing the precision and dependability of crop models. Such efforts hold substantial importance in shaping agricultural policies and refining management practices, ultimately aiding in tackling the challenges posed by impending climate change.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Agricultural Systems
Agricultural Systems 农林科学-农业综合
CiteScore
13.30
自引率
7.60%
发文量
174
审稿时长
30 days
期刊介绍: Agricultural Systems is an international journal that deals with interactions - among the components of agricultural systems, among hierarchical levels of agricultural systems, between agricultural and other land use systems, and between agricultural systems and their natural, social and economic environments. The scope includes the development and application of systems analysis methodologies in the following areas: Systems approaches in the sustainable intensification of agriculture; pathways for sustainable intensification; crop-livestock integration; farm-level resource allocation; quantification of benefits and trade-offs at farm to landscape levels; integrative, participatory and dynamic modelling approaches for qualitative and quantitative assessments of agricultural systems and decision making; The interactions between agricultural and non-agricultural landscapes; the multiple services of agricultural systems; food security and the environment; Global change and adaptation science; transformational adaptations as driven by changes in climate, policy, values and attitudes influencing the design of farming systems; Development and application of farming systems design tools and methods for impact, scenario and case study analysis; managing the complexities of dynamic agricultural systems; innovation systems and multi stakeholder arrangements that support or promote change and (or) inform policy decisions.
期刊最新文献
Environmental effects of improved regional nitrogen cycling in crop-livestock systems – A generic modelling approach Nitrogen uptake and leaching from urine and fertilizer applications during simulated grazing rotations of a perennial grass pasture The bittersweet economics of different cacao production systems in Colombia, Ecuador and Peru Decomposing the total uncertainty in wheat modeling: an analysis of model structure, parameters, weather data inputs, and squared bias contributions Estimating environmental efficiency in dairy production using by-production technology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1