A prediction model for the mechanical properties of SUS316 stainless steel ultrathin strip driven by multimodal data mixing

IF 7.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-12-01 DOI:10.1016/j.matdes.2024.113504
Zhenhua Wang , Pengzhan Wang , Yunfei Liu , Yuanming Liu , Tao Wang
{"title":"A prediction model for the mechanical properties of SUS316 stainless steel ultrathin strip driven by multimodal data mixing","authors":"Zhenhua Wang ,&nbsp;Pengzhan Wang ,&nbsp;Yunfei Liu ,&nbsp;Yuanming Liu ,&nbsp;Tao Wang","doi":"10.1016/j.matdes.2024.113504","DOIUrl":null,"url":null,"abstract":"<div><div>Constructing a mapping relationship among material preparation process, microstructure, and mechanical properties is a challenge in material research and development. In this work, a deep learning framework for multimodal data fusion is constructed that couples a multi-layer perceptron (MLP) and a residual neural network (ResNet) to predict mechanical properties of SUS316 stainless steel ultrathin strips. Specifically, the MLP branch is used to extract the rolling process data features, and the ResNet with the addition of a convolutional block attention module (CBAM) is used to extract the microstructure features. Six models are constructed for comparison under the comprehensive consideration of factors such as unimodal network, the multimodal network and input form of image samples. The results show that the multimodal data model fused with the ResNet and MLP after adding the CBAM using both rolling process data and four types of microstructure image data as model inputs has the most accurate prediction results. The R<sup>2</sup>, MAPE, RMSE and MAE are 0.998, 0.727, 4.440 and 3.359, respectively. In addition, the proposed model is used for predicting yield strength and elongation, and the results show that the R<sup>2</sup> values of both models on the test set are greater than 0.980, fully confirming that the multimodal data model has high prediction accuracy and good generalizability.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113504"},"PeriodicalIF":7.6000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008797","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Constructing a mapping relationship among material preparation process, microstructure, and mechanical properties is a challenge in material research and development. In this work, a deep learning framework for multimodal data fusion is constructed that couples a multi-layer perceptron (MLP) and a residual neural network (ResNet) to predict mechanical properties of SUS316 stainless steel ultrathin strips. Specifically, the MLP branch is used to extract the rolling process data features, and the ResNet with the addition of a convolutional block attention module (CBAM) is used to extract the microstructure features. Six models are constructed for comparison under the comprehensive consideration of factors such as unimodal network, the multimodal network and input form of image samples. The results show that the multimodal data model fused with the ResNet and MLP after adding the CBAM using both rolling process data and four types of microstructure image data as model inputs has the most accurate prediction results. The R2, MAPE, RMSE and MAE are 0.998, 0.727, 4.440 and 3.359, respectively. In addition, the proposed model is used for predicting yield strength and elongation, and the results show that the R2 values of both models on the test set are greater than 0.980, fully confirming that the multimodal data model has high prediction accuracy and good generalizability.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Extreme high accuracy prediction and design of Fe-C-Cr-Mn-Si steel using machine learning Microstructure and kinetic evolutions of multi-variants lamella in γ-TiAl alloys Temperature-dependent mechanical behavior in a novel hierarchical B2-strengthened high entropy alloy: Microscopic deformation mechanism and yield strength prediction In-situ fabrication of Ti-TiCx metal matrix composite by laser powder bed fusion with enhanced elastic modulus and superior ductility Establishing room-temperature multiferroic behaviour in bismuth-based perovskites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1