Predicting the diffusion coefficients of rejuvenators into bitumens using molecular dynamics, machine learning, and force field atom types

IF 7.9 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Materials & Design Pub Date : 2024-12-01 DOI:10.1016/j.matdes.2024.113502
Eli I. Assaf , Xueyan Liu , Peng Lin , Shisong Ren , Sandra Erkens
{"title":"Predicting the diffusion coefficients of rejuvenators into bitumens using molecular dynamics, machine learning, and force field atom types","authors":"Eli I. Assaf ,&nbsp;Xueyan Liu ,&nbsp;Peng Lin ,&nbsp;Shisong Ren ,&nbsp;Sandra Erkens","doi":"10.1016/j.matdes.2024.113502","DOIUrl":null,"url":null,"abstract":"<div><div>This study explores the use of chemical descriptors derived from force field atom types to predict Fickian diffusion coefficients of rejuvenators in bitumen, utilizing machine learning models trained on data from 240 non-equilibrium molecular dynamics simulations. The simulations cover three bitumen types (NO, TO, FO), five aging degrees, and four temperatures (60 °C, 120 °C, 160 °C, 200 °C), capturing diffusion coefficients ranging from 0.0068e-10 m<sup>2</sup>/s in highly aged bitumens at 60 °C to 4.35e-10 m<sup>2</sup>/s in fresher samples at 200 °C. The MLM, built with 18 chemical descriptors for bitumen and rejuvenator sides, achieves an R<sup>2</sup> of 0.97, accurately predicting diffusion across varied conditions. This approach abstracts away from the need for repeated MD simulations, enabling diffusion predictions even for systems outside the original dataset. The manuscript presents three case studies to illustrate how the model can be used for the iterative design of rejuvenators by optimizing molecular structures based on critical chemical features, such as rejuvenator oxygen content, bitumen sulfur content, and molecular weights. It also demonstrates how the model offers a practical framework for understanding the diffusion and performance of rejuvenators by linking time-dependent factors—such as concentration, depth, and rejuvenation time—with the bulk properties of bitumen-rejuvenator systems, facilitating industrial applications.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"248 ","pages":"Article 113502"},"PeriodicalIF":7.9000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008773","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study explores the use of chemical descriptors derived from force field atom types to predict Fickian diffusion coefficients of rejuvenators in bitumen, utilizing machine learning models trained on data from 240 non-equilibrium molecular dynamics simulations. The simulations cover three bitumen types (NO, TO, FO), five aging degrees, and four temperatures (60 °C, 120 °C, 160 °C, 200 °C), capturing diffusion coefficients ranging from 0.0068e-10 m2/s in highly aged bitumens at 60 °C to 4.35e-10 m2/s in fresher samples at 200 °C. The MLM, built with 18 chemical descriptors for bitumen and rejuvenator sides, achieves an R2 of 0.97, accurately predicting diffusion across varied conditions. This approach abstracts away from the need for repeated MD simulations, enabling diffusion predictions even for systems outside the original dataset. The manuscript presents three case studies to illustrate how the model can be used for the iterative design of rejuvenators by optimizing molecular structures based on critical chemical features, such as rejuvenator oxygen content, bitumen sulfur content, and molecular weights. It also demonstrates how the model offers a practical framework for understanding the diffusion and performance of rejuvenators by linking time-dependent factors—such as concentration, depth, and rejuvenation time—with the bulk properties of bitumen-rejuvenator systems, facilitating industrial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用分子动力学、机器学习和力场原子类型预测再生剂进入沥青的扩散系数
本研究利用240个非平衡分子动力学模拟数据训练的机器学习模型,探索了使用来自力场原子类型的化学描述符来预测沥青中恢复剂的菲克扩散系数。模拟涵盖了三种沥青类型(NO, TO, FO),五种老化程度和四种温度(60°C, 120°C, 160°C, 200°C),捕获的扩散系数范围从60°C高老化沥青的0.0068e-10 m2/s到200°C新鲜样品的4.35e-10 m2/s。该传销包含18个沥青和再生剂侧的化学描述符,R2为0.97,可以准确预测不同条件下的扩散。这种方法抽象了重复MD模拟的需要,甚至可以对原始数据集以外的系统进行扩散预测。该手稿提出了三个案例研究,以说明如何通过优化基于关键化学特征的分子结构,如振兴剂氧含量,沥青硫含量和分子量,该模型可用于振兴剂的迭代设计。它还展示了该模型如何通过将时间相关因素(如浓度、深度和回水时间)与沥青回水剂系统的体积特性联系起来,为理解回水剂的扩散和性能提供了一个实用框架,从而促进了工业应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Materials & Design
Materials & Design Engineering-Mechanical Engineering
CiteScore
14.30
自引率
7.10%
发文量
1028
审稿时长
85 days
期刊介绍: Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry. The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.
期刊最新文献
Synergistic control of microstructure and mechanical properties in low-carbon alloyed bulb flat steel through multistage induction quenching Microstructure and compression behavior of powder-metallurgy processed fine-grained TWIP steel First-principles study of the superconductivity of quaternary ABIrH6 (A, B = Be, Mg, Ca, Sr, Ba) compounds under ambient pressure Morphological design of nano-engineered expanded graphite for enhanced dynamic energy absorption in liquid thermoplastic/CF composites Hybrid organic–inorganic polymers based on sarcosine: The influence of metal coordination on phase transitions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1