Comparative analysis of counter-current and co-current downer reactors using particle image velocimetry and computational particle-fluid dynamics

IF 5.5 Q1 ENGINEERING, CHEMICAL Chemical Engineering Journal Advances Pub Date : 2024-11-26 DOI:10.1016/j.ceja.2024.100687
Talal A. Aldugman , Mengmeng Cui , Abdulrahman Alzailaie , Abdullah Alhareth , Kenneth Langley , Lujain Alfilfil , Khalid Almajnouni , Jorge Gascon , Sigurdur Thoroddsen , Pedro Castaño
{"title":"Comparative analysis of counter-current and co-current downer reactors using particle image velocimetry and computational particle-fluid dynamics","authors":"Talal A. Aldugman ,&nbsp;Mengmeng Cui ,&nbsp;Abdulrahman Alzailaie ,&nbsp;Abdullah Alhareth ,&nbsp;Kenneth Langley ,&nbsp;Lujain Alfilfil ,&nbsp;Khalid Almajnouni ,&nbsp;Jorge Gascon ,&nbsp;Sigurdur Thoroddsen ,&nbsp;Pedro Castaño","doi":"10.1016/j.ceja.2024.100687","DOIUrl":null,"url":null,"abstract":"<div><div>We investigated the hydrodynamics in co- and counter-current downer operations using particle image velocimetry (PIV) and computational particle fluid dynamics simulations (CPFD). Pilot-scale experiments were conducted for fluid catalytic cracking (FCC) catalysts and sand, which verified the system stability and provided the validation basis for the simulation strategy. We compared the reactor characteristics of counter-current and co-current downers under different operating modes and conditions using PIV experiments and CPFD simulations. PIV experiments showed that the counter-current downer exhibits a more uniform particle velocity profile, with a gradient of only 8 % of the maximum velocity, compared to the co-current operation, which shows a significantly steeper gradient of 39.5 % from the maximum. Simulations confirmed that the counter-current downer reactor has 69 % higher solid holdup and 98 % longer residence time than the co-current operation. Thus, the counter-current downer reactor demonstrated intermediate behavior between the classical co-current downer and riser reactors, offering flexibility for industrial applications.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"21 ","pages":"Article 100687"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666821124001042","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We investigated the hydrodynamics in co- and counter-current downer operations using particle image velocimetry (PIV) and computational particle fluid dynamics simulations (CPFD). Pilot-scale experiments were conducted for fluid catalytic cracking (FCC) catalysts and sand, which verified the system stability and provided the validation basis for the simulation strategy. We compared the reactor characteristics of counter-current and co-current downers under different operating modes and conditions using PIV experiments and CPFD simulations. PIV experiments showed that the counter-current downer exhibits a more uniform particle velocity profile, with a gradient of only 8 % of the maximum velocity, compared to the co-current operation, which shows a significantly steeper gradient of 39.5 % from the maximum. Simulations confirmed that the counter-current downer reactor has 69 % higher solid holdup and 98 % longer residence time than the co-current operation. Thus, the counter-current downer reactor demonstrated intermediate behavior between the classical co-current downer and riser reactors, offering flexibility for industrial applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
期刊最新文献
Adaptation of an additively manufactured reactor concept for catalytic methanation with in-situ tar co-reforming of biogenic syngas Selective solvothermal extraction of tetrabromobisphenol A to promote plastic recycling Comparative analysis of counter-current and co-current downer reactors using particle image velocimetry and computational particle-fluid dynamics The role of multivalent cations in determining the cross-linking affinity of alginate hydrogels: A combined experimental and modeling study Fabrication and characterization of UV-curable thiol-functionalized siloxane elastomers with enhanced adhesion for flexible substrates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1